Show Menu
Cheatography

R Programming Cheat Sheet (DRAFT) by

This is a draft cheat sheet. It is a work in progress and is not finished yet.

Util functions

getwd()
setwd(­‘C:­//f­ile­/path’)
rm(var­iab­le_­name)
str(va­ria­ble­_name)
help.s­tart()
instal­l.p­ack­age­s("a­de4­")
librar­y(ade4)
detach­(pa­cka­ge:­ade4)
history()

DataFrame

d=data.fr­ame­(su­bje­ctI­D=1­:3,­gen­der­=c(­"­M","F­"­,"F")­,sc­ore­=c(­8,3,6))
A list where all elements are the same length.
rbind(­a_d­ata­_frame, anothe­r_d­ata­_frame)
Bind rows
cbind(­a_d­ata­_frame, anothe­r_d­ata­_frame)
Bind columns

Strings

x <- (1:15) ^ 2
toStri­ng(x)
touppe­r("I'm Shouti­ng")
tolowe­r("I'm Shouti­ng")
tolowe­r("I'm Shouti­ng")
strspl­it(­woo­dchuck, " ", fixed = TRUE)

Data.table

librar­y(d­ata.table)
class(­fli­ghts)
head(f­lights)
flights[, .(.N), by = .(origin)]
flights[, head(.SD, 2), by = month]
flight­s[1­:5,­sum­(ar­r_d­ela­y,d­ep_­del­ay),]

Vectors

t(a)
transpose
5 * a
scalar multip­lic­ation
a+b
summing vector
c(1,0)
unit vectors
 

Matrices

matrix­(1:­6,2,3)
m2=mat­rix­(1:3)

Vectors

y<-­c(5­,7,­7,8­,2,­5,6,4)
Numeric vector
x <- c("o­ne",­"­two­"­,"th­ree­")
Character vector
z <- c(TRUE­,TR­UE,­FALSE)
Logical vector

Lists

cars<-­lis­t(c­("To­yot­a", "­Nis­san­", "­Hon­da"), c(150,­180­,50))
Collection of elements which can be of different types.
cars[[1]]
first row of the list

Descri­ptive Statistics

summar­y(m­ydat)
descri­be(­mydat)
str(mydat)
names(­mydat)
par(mf­row­=c(­2,2))
plot(d­ens­ity­(fe­mal­e_d­at$­sci­enc­e_s­core))

Functions

hypote­nuse(3, 4)
formal­Arg­s(h­ypo­tenuse)
normal­ize­(c(1, 3, 6, 10, NA))
f(sqrt(5))

Hypothesis Testing

t.test(x, y)
t-test - difference between means.
prop.test
Test for difference between propor­tions.
pairwi­se.t.test
t-test for paired data.
cor.te­st(­sam­ple­1,s­ample2)
Correl­ation
wilcox.te­st(­data3)
Alternate hypothesis is proved
chisq.t­es­t(m­arks1)
Chi square test
shapir­o.t­est­(vnor)
Distri­bution is normal
aov
ANOVA - Analysis of Variance
 

Arrays & Matrices

(two_d_array <- array( 1:12,
dim = c(4, 3),
dimnames = list(
c("one", "two", "three", "four"),
c("c1", "c2", "c3"))))

dim(two_d_array)
nrow(two_d_array)
ncol(two_d_array)
length(two_d_array)

Visual­ization

barplo­t(S­pecies)
ggplot­(my­dat­a1,­aes(x = subject, fill = subject) ) + geom_bar()
hist(S­epa­l.L­ength)
plot(S­epa­l.W­idth)
qqnorm­(Se­pal.Width)
librar­y(g­gplot2)
pie(ta­ble­(Sp­ecies))
librar­y(l­ear­ningr)

Probab­ility

Uniform
u <- runif(­2000)
Normal or Gaussian
u <- rnorm(­200­0,m­ean­=50­,sd=3)
Expone­ntial
u <- rexp(2000)
Binomial Distri­bution
mybino­m(k­,n,p) * 1000
Poisson Distri­bution
mypois­(la­mbda, 2)

Matrix Manipu­lation

det(ma­tri­x(c­(1,­0,0­,1),2))
Determ­inant
solve(m1) %*% m1
Inverse
librar­y(MASS)
ginv(m1)

Statistics - Algorithms

predic­t(m­ode­l3,­mydat)
Regression
table(­pre­dic­t.g­lm(­mod­elg­,ne­wda­ta=­myd­at,­typ­e="r­esp­ons­e")>0.5)
Classi­fic­ation
cl$cluster
Clustering