Cheatography
https://cheatography.com
Probability, Association Rules
This is a draft cheat sheet. It is a work in progress and is not finished yet.
Association Rules
X->Y |
X associated to Y |
Supp(X): Antecedent support |
P(contains X) |
Supp(X and Y): Rule Support |
P(contains X and Y) |
Conf(X->Y): Rule Confidence |
P(contains Y| contains X) |
Left(X->Y): Rule Lift |
P(contains Y|contains X)/P(contains Y) |
|
Confidence Interval
总体方差已知时 |
CI: [(𝑋_𝑛 ) −𝑧∗𝜎/√𝑛, (𝑋_𝑛 ) +𝑧∗𝜎/√𝑛] |
𝑋_𝑛 为样本均值,𝜎表示总体标准差,z依据置信水平而定 |
z = qnorm(0.95,0,1) |
置信水平为90%时,z的计算 |
总体方差未知 |
CI: [(𝑋_𝑛 ) −t∗S/√𝑛, (𝑋_𝑛 ) +t∗S/√𝑛] |
用样本方差S代替𝜎,用t分布代替整体分布 |
t_value = qt(0.975,df = n-1) |
置信水平为95%时,t的计算 |
t=x −μ /(s/√𝑛) |
T统计量的计算 |
t.test( ) |
会得出T值,p值,这里的p值检测的是T统计量的极端性,当p非常小时,拒绝原假设 |
t.test(ChickWeight$weight[ChickWeight$Diet==1],ChickWeight$weight[ChickWeight$Diet==2],conf.level = 0.9) |
检验两个总体差值的置信区间 |
proportion test |
比例检验用于比较两个二项分布(二项分布表示成功和失败的次数,或者说是比例)的比例是否相等或满足某种假设。比例检验通常用于判断两个不同组群的比例是否有显著差异。 |
|
|
Hypothesis test
type 1 error |
reject H_0 while it’s true(often denoted by "𝛼") |
type 2 error |
not reject H_0 even though it’s false (denoted by "𝛽") |
significance level |
maximum on Type-1 error probability |
p-value |
minimum 𝜶 needed to reject H0 |
|
|
|