| Joint Probability Mass Function
                        
                                                                                    
                                                                                            | E[XY] | Summe von x * y * f(xy) |  Arena Variables and Function
                        
                                                                                    
                                                                                            | DISC(0.3, 1, 0.8, 2, 1.0, 3) | DISC generates random discrete values based on cumulative probabilities; pair each probability with its corresponding value. |  
                                                                                            | TNOW | Current simulated time |  
                                                                                            | NR(Res) | Res Servers currently in service |  
                                                                                            | NQ(Queue) | Number of customers in Queue |  
                                                                                            | Mod.NumberOut | Customers who have left the mode |  |  | Expected Value, Variance, ...
                        
                                                                                    
                                                                                            | Discrete E[X] | SUM[x * f(x)] |  
                                                                                            | Continous E[X] | SUM[x * f(x) dx] |  
                                                                                            | Variance of X | E[X2] - (E[X])2 |  
                                                                                            | Standard Deviation of X | SQRT[Var(X)] |  Random Number Generators
                        
                                                                                    
                                                                                            | Bad generators | Midsquare number generator, Random number tables, von Neumann's mid-square method, Fibonacci generator, Additive congruential generator, RANDU |  
                                                                                            | Good generators | Linear Congruential Generators (modern cycle length > 2191; Mersenne Twister (219937) |  
                                                                                            | Randu | 65539Xi mod(231) |  
                                                                                            | Desert island | 16807Xi mod(231-1) mod(2147483647) |  Inverse Transform Method Key Problems
                        
                                                                                    
                                                                                            | If X ~ Normal(0,1), what’s the distribution of Φ(X)? | Unif(0,1) |  
                                                                                            | If U∼Uniform(0,1) and  Φ(x) is the CDF of the standard normal, what is the distribution of 2Φ −1 (U)+3? | Φ−1(U) turns a Uniform(0,1) into a Normal(0,1). Multiply by 2 → scales the standard deviation by 2 = Normal(0,4). Add 3 → shifts the mean to 3. = Normal(3,4) |  
                                                                                            | -3ℓn(U²V²) where U, V ~ i.i.d. Unif(0,1) | = -6ℓn(U) - 6ℓn(V) ~ Exp(1/6) + Exp(1/6) ~ Erlang₂(1/6) |  |  | Given CDF with two cases, generate XComplete Distribution Reference TableBox Muller Method
                        
                                                                                    
                                                                                            | Z1 | √(-2·ln(U₁)) · cos(2π·U₂) |  
                                                                                            | Z2 | √(-2·ln(U₁)) · sin(2π·U₂) |  Radian-Modus einschalten! Chi-Square Distribution
                        
                                    
                        | If Z₁, Z₂, Z₃ are i.i.d. Nor(0,1), find c such that P(Z₁² + Z₂² + Z₃² < c) = 0.99
 Calculator: chiSqInv(0.99, 3) → 11.34
 |  Find distribution of U1 and U2
                        
                                                                                    
                                                                                            | Find distribution of -4(U₁ + U₂) - 2 |  
                                                                                            | U₁ + U₂ ~ Tria(0, 1, 2) |  
                                                                                            | Apply the transformation -4(U₁ + U₂) = 4(Tria(0, 1, 2) ) |  
                                                                                            | The minimum becomes: -4(2) = -8; The mode becomes: -4(1) = -4; The maximum becomes: -4(0) = 0 |  
                                                                                            | 4·Tria(0, 1, 2) = Tria(-8, -4, 0) |  
                                                                                            | Subtract 2 |  
                                                                                            | Tria(-10, -6, -2) |  |