

OMSA Midterm Exam 2 Cheat Sheet

by jack1982 via cheatography.com/216403/cs/47268/

Given CDF with two cases, generate X

Arena Templates

Basic Process		Advanced Process	
Module	Sheet	Module	Sheet
Create	Attribute	Seize	Adv. Set
Dispose	Entity	Delay	Expression
Process	Queue	Release	Failure
Batch	Resource		
Separate	Variable		
Assign	Schedule		
Record	Set		

Bloc	ks	Advano	ced Transfer
Module	Sheet	Module	Sheet
Seize		Station	Sequence
Delay		Route	Conveyor
Release		Enter	Transporter
Queue		Leave	Distance
			Segment

 ${\it Transporter uses Request/Free, requires \ Distance \ Set.}$ ${\it Conveyor uses \ Access/Exit, \ requires \ Segment \ Set.}$

Arena Variables and Function

DISC(0.3, 1, 0.8, 2, 1.0, 3)	DISC generates random discrete values based on cumulative probabilities; pair each probability with its corresponding value.
TNOW	Current simulated time
NR(Res)	Res Servers currently in service
NQ(Queue)	Number of customers in Queue
Mod.Nu- mberOut	Customers who have left the mode

Arena Set Types

Resource, Counter, entity type, entity picture

Arena Key M	odules
Assign	Give new value to an attribute
Decide	Route customers probabilistically or conditionally
Separate / Clone	Split one customer into two or more clones
Route	Move entities station to station (advanced transfer)
Enter / Leave	Usually paired together for station management
Seize - Delay - Release	equals single Process module
Queue block	Cannot connect with a process module

Example of finding X for Pois

<u>x</u>	$f(x) = e^{-\lambda} \lambda^x / x!$ 0.8187 0.1627	F(x) 0.8187	Unif(0,1)'s [0,0.8187]
2	0.1637 0.0164 0.0011	0.9824 0.9988 0.9999	(0.8187, 0.9824] (0.9824, 0.9988] (0.9988, 0.9999]
≥ 4		1.0000	(0.9999, 1.0000]
Notice that I'm not draw a PRN $U=0$.			4" case. Anyway, suppose that I et?
(a) 0			
(b) 0.726 (c) 1			
(d) 2			
(e) 3			
Solution: From the choice (a).	table, we see that	U = 0.7	26 clearly corresponds to $X = 0$,

Universal truths

-In(U)	~Exponential(1)
	lnu

messy cdf	
See F(X)	Replace with Uniform(0,1)
Multiply by 3	U(0,3)
Subtract 1	U(-1,2)
Mean	(-1+2)/2 = 1/2
What is the me	an of the random variable

Inverse Transf	ormation
Given U, find Z	invNorm(U, 0, 1)
Given Z, find U	normCdf(-9999, Z, 0, 1)
Exponenti- al(λ)	$X = -\ln(1-U)/\lambda$
Uniform(a,b)	$X = a + (b-a)\cdot U$
Weibull(a,b)	$X = a * (-ln(U))^{1/b}$
Triangular	If U<0.5: √(2U); If U≥0.5: 2- √(2(1-U))
Bernoulli(p)	If U < 1-p \rightarrow 0; Else \rightarrow 1
Poisson(λ)	Build CDF, match U
Discrete Unif(1,n)	[n·U]
Erlang(k,λ)	-(1/λ)In(∏Ui)
Geometric	In(1-U)/In(1-p)

For discrete: Find smallest x where $F(x) \ge U$ For continuous: Use inverse CDF formulas Box-Muller generates TWO Normal(0,1) values from TWO Uniform(0,1) values

XOR

XOR is only true if different

C

By jack1982

cheatography.com/jack1982/

Not published yet. Last updated 31st October, 2025. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

OMSA Midterm Exam 2 Cheat Sheet

by jack1982 via cheatography.com/216403/cs/47268/

Expected Value, Variance,		
Discrete E[X]	SUM[x * f(x)]	
Continous E[X]	SUM[x * f(x) dx]	
Variance of X	$E[X^2] - (E[X])^2$	
Standard Deviation of X	SQRT[Var(X)]	

Expected Value Joint pdf

Joint p.d.f.: $f(x,y) = 2xy^2$; Domain: 0 < x < 1, 0 < y < 1

Find: E[2X-1]

 $E[2X - 1] = \int_{0^{1}} \int_{0^{1}} (2x - 1) \cdot 2xy^{2} dy dx$

Random Number Generators		
Bad generators	Midsquare number generator, Random number tables, von Neumann's mid-square method, Fibonacci generator, Additive congruential generator, RANDU	
Good generators	Linear Congruential Generators (modern cycle length > 2 ¹⁹¹ ; Mersenne Twister (2 ¹⁹⁹³⁷)	
Randu	65539Xi mod(2 ³¹)	
Desert island	16807Xi mod(2 ³¹ -1) mod(21- 47483647)	
Desert island	Z = [SUM(Ui)-n/2] / [SQRT(n * 1/12]	

Inverse Transform	n Method Key Problems
If $X \sim \text{Normal}$ (0,1), what's the distribution of $\Phi(X)$?	Unif(0,1)
If U~Uniform-	Φ -1(U) turns a Unifor-
(0,1) and $\Phi(x)$ is the CDF of	m(0,1) into a Normal-
the standard	(0,1). Multiply by 2 \rightarrow
normal, what is	scales the standard
the distribution	deviation by 2 = Normal-
of $2\Phi -1$	(0,4). Add 3 \rightarrow shifts the
(U)+3?	mean to 3. = Normal(3,4)
$-3\ell n(U^2V^2)$	= $-6\ell n(U) - 6\ell n(V) \sim$
where U, V ~	Exp(1/6) + Exp(1/6) \sim
i.i.d. Unif(0,1)	Erlang ₂ (1/6)

Joint Probability Mass Function

E[XY] Summe von x * y * f(xy)

Joint p.m.f.	
Are independent if	X and Y are independent if and only if $pX,Y(x,y) = pX(x) \cdot pY(y)$
For example	P(X=1, Y=0) = P(Y=0) * P(X=1)
E[XY]	Example: (1)(0)(0.2) + (1)(1)-(0.0.0) +
Cov(X,Y)	E[XY] - E[Y]E[X]
Variance X + Y	Var(X) + Var(Y) + 2Cov(X,Y)

Joint p.m.f.	(cont)	
Variance X - Y	Var(X) + Var(Y) - 2Cov(X,Y)	
Theorem	Cov(X,Y) = 0 if X, Y indepedent. Converse not true.	
Correl- ation	p = Cov(X,Y) / SQRT(Var(X) * Var(Y))	
pdf, cdf		
pdf -> cdf	integrate with x, 0 as limit	
cdf F-1(U)	solve(F(x)=U, x)	

Complete Distribution Reference Table

Bernouff(p)	FU < 1-p → 0: Else → 1	p=0.75, U=0.20 → X=0	Single success/fall trial
Discrete Unif(1,n)	[nU]	n+10, U=0.376 -+ X+4	Equal probability for all values
Geometric(p)	[Inct-Us/Inct-p)]	p=0.8, U=0.72 → X=4	Trials until first success
Poisson(A)	Build CDF, match U	A+2, U+0.313 → X+1	# of events in interval
Exponential(A)	-(1/9)-(n(U)	A+2, U+0.3 → X+0.60	Time between events
Uniform(a,b)	a + (b-a)-U	a=2, b=6, U=0.25 X=3	All values equally likely
Normal(µ,o*)	µ + o @ \(U)	µ+5, α+2, U+0.84 → X+7	Bell curve distribution
Erlang(k,k)	-(19)n(CU)	k=2, k=3, U,U,=0.28 X=0.42	Sum of k exponentials
For continuous: U	I smallest x where F(x) ≥ U Ise inverse CDF formulas for custom discrete distributions when TWO Normal(0,1) values from		

Box Muller Method				
Z1	$\sqrt{(-2 \cdot ln(U_1)) \cdot cos(2\pi \cdot U_2)}$			
Z2	$\sqrt{(-2 \cdot ln(U_1)) \cdot sin(2\pi \cdot U_2)}$			
Z1/Z2	cot(2π·U₂) ~Cauchy			
Z2/Z1	tan(2π·U₂) ~Cauchy			
Radian-Modus einschalten!				

Chi-Square Distribution

If Z_1 , Z_2 , Z_3 are i.i.d. Nor(0,1), find c such that $P(Z_1^2 + Z_2^2 + Z_3^2 < c) = 0.99$ Calculator: chiSqInv(0.99, 3) \rightarrow 11.34 X_1 , X_2 , X_3 , X_4 are i.i.d. Nor(0,1). Find $Pr(X_1 + X_2 - X_3 - X_4 > 10)$ Calculator normCdf(10,unendlich,0,n/2)

technique

By jack1982

cheatography.com/jack1982/

Not published yet. Last updated 31st October, 2025. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

OMSA Midterm Exam 2 Cheat Sheet

Hypothesis Testing Errors

Type I

Error

(False

positive)

Type II

Error

(False

negative)

by jack1982 via cheatography.com/216403/cs/47268/

 $\alpha = P(Reject H_0 | H_0 is true)$,

β = P(Fail to reject H_o | H_o is

false); No fire alarm when

there IS a fire

Fire alarm when no fire

Find distribution of U1 and U2

Find distribution of $-4(U_1 + U_2) - 2$

 $U_1 + U_2 \sim Tria(0, 1, 2)$

Apply the transformation $-4(U_1 + U_2) = 4(Tria(0, 1, 2))$

The minimum becomes: -4(2) = -8; The mode becomes: -4(1) = -4; The maximum

becomes: -4(0) = 0

4·Tria(0, 1, 2) = Tria(-8, -4, 0)

Subtract 2

Tria(-10, -6, -2)

Acceptance-Rejection	Α	cce	ptai	nce-	Rei	ectior	l
----------------------	---	-----	------	------	-----	--------	---

Goal Generate random samples from

a hard-to-sample distribution

(f(x)).

Idea Sample from an easier distri-

bution (h(x)), then accept or reject each sample based on

how well it fits f(x).

Example If a random variable X has the

beta distribution, then its p.d.f. is of the form $f(x) = \Gamma(\alpha+\beta) \Gamma(\alpha)\Gamma(\beta)$ $x\alpha-1(1-x)\beta-1$, 0 < x < 1, for parameters α and $\beta > 0$, and where $\Gamma(\cdot)$ is the gamma function. How might you generate such a random variate? Pick the best answer.

Goodness of fit

Find critical

Inverse X2; Area = 1-alpha; df

= n-1; invx2(0.9,3)

value

If critical value is bigger than

accept H0

By jack1982

cheatography.com/jack1982/

Not published yet. Last updated 31st October, 2025. Page 4 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

