Cheatography
https://cheatography.com
Formulas for the basic topics of analytical geometry.
Line
General equation Ax+By+C=0
|
Point slope equation y-y1=m(x-x1)
|
Slope of a straight line (m) m=-A/B m=(y2-y1)/(x2-x1) m=tg(α)
|
Positions relative to two lines
Equations Ax+By+C=0 A'x+B'y+C'=0
|
Secant lines A/A'≠B/B'
|
Parallel lines A/A'=B/B'≠ C/C'
|
Coincident lines A/A'=B/B'= C/C'
|
Parallel lines
Slope m1=m2 -A/B=-A'/B'
|
Perpendicular lines
Slope m1.m2=-1 -A/B=B'/A'
|
|
|
Points
Coordinates P(x1,y1) Q(x2,y2) M(x3,y3)
|
Distance between two points (P and Q) d=√[(x2-x1)^2+(y2-y1)^2]
|
Midpoint (M) x3=(x1+x2)/2 y3=(y1+y2)/2
|
Distance from a point (P) to a line d=|(A.x1+B.y1+C)/√(a^2+b^2)|
|
Circumference
Ordinary equation (x-a)^2+(y-b)^2=r^2
|
Elements Center: C(a,b) Point: P(x,y) Radius: r
|
General equation x^2+y^2+Ax+By+C=0 If: (A/2)^2+(B/2)^2-C>0 x and y don't multiply x^2 and y^2 have 1 as coefficient
|
Elements A=-2a B=-2b C=a^2+b^2-r
|
Ellipse
Equation [(x-x0)^2]/(a^2)+[(y-y0)^2]/(b^2)=1 Center: C(x0,y0) Horizontal radius: a Vertical radius: b
|
|
|
Parabola
General equation Ax^2+Bxy+Cy^2+Dx+Ey+F=0 If: A≠0 v B≠0 B^2-4AC=0
|
Vertical Parabola Ordinary Equation (x-x0)^2=2p(y-y0) Vertex: V(x0,y0) Parameter: p
|
Horizontal Parabola Ordinary Equation (y-y0)^2=2p(x-x0) Vertex: V(x0,y0) Parameter: p
|
Hyperbola
General equation Ax^2+Bxy+Cy^2+Dx+Ey+F=0 If: A≠0 ^ B≠0 A.B<0
|
Ordinary Equation (horizontal focal axis) [(x-x0)^2]/(a^2)-[(y-y0)^2]/(b^2)=1
|
Ordinary Equation (vertical focal axis) [(y-y0)^2]/(b^2)-[(x-x0)^2]/(a^2)=1
|
Equilateral Hyperbola Equation a=b
|
Asymptotes y=x y=-x
|
Elements Center: O(x0,y0) Length of the semimajor axis of the hyperbola: a Length of the semi-minor axis of the hyperbola: b
|
|
Created By
Metadata
Comments
No comments yet. Add yours below!
Add a Comment
Related Cheat Sheets
More Cheat Sheets by doxeado