This is a draft cheat sheet. It is a work in progress and is not finished yet.
Trigonometric Identities
Reciprocal Trigonometric Identities |
Sin θ = 1/Csc θ or Csc θ = 1/Sin θ |
Cos θ = 1/Sec θ or Sec θ = 1/Cos θ |
Tan θ = 1/Cot θ or Cot θ = 1/Tan θ |
Pythagorean Trigonometric Identities |
sin2 a + cos2 a = 1 |
1+tan2 a = sec2 a |
cosec2 a = 1 + cot2 a |
Ratio Trigonometric Identities |
Tan θ = Sin θ/Cos θ |
Cot θ = Cos θ/Sin θ |
Sum and Difference of Angles Trigonometric Identities |
sin(α+β)=sin(α).cos(β)+cos(α).sin(β) |
sin(α–β)=sinα.cosβ–cosα.sinβ |
cos(α+β)=cosα.cosβ–sinα.sinβ |
cos(α–β)=cosα.cosβ+sinα.sinβ |
Derivation Formula
Product Rule |
(d/dx) (fg)= fg’ + gf’ |
Quotient Rule |
(d/dx) (f/g) = gf'-fg'/g2 |
Chain Rule |
y = f(g(x)), then y' = f'(g(x)). g'(x) |
|
|
Derivatives of Trigonometric Functions
If f( x) = sin x, then f′( x) = cos x |
If f( x) = cos x, then f′( x) = −sin x |
If f( x) = tan x, then f′( x) = sec 2 x |
If f( x) = cot x, then f′( x) = −csc 2 x. |
If f( x) = sec x, then f′( x) = sec x tan x |
If f( x) = csc x, then f′( x) = −csc x cot x |
Examples
g ( x ) = 3 sec ( x ) − 10 cot ( x ) |
|
|
Derivative of sec x
We will determine the derivative of sec x using the chain rule. We will use the following formulas and identities to calculate the derivative:
sec x = 1/cos x
tan x = sin x/cos x
(cos x)' = -sin x
(sec x)' = (1/cos x)' = (-1/cos2x).(cos x)'
= (-1/cos2x).(-sin x)
= sin x/cos2x
= (sin x/cos x).(1/cos x)
= tan x sec x
Therefore, d(sec x)/dx = tan x sec x |
|
|
Derivative of cot x
We will determine the derivative of cot x using the quotient rule. We will use the following formulas and identities to calculate the derivative:
(sin x)' = cos x
(cos x)' = -sin x
cot x = cos x/ sin x
cos2x + sin2x = 1
cosec x = 1/sin x
(cot x)' = (cos x/sin x)'
= [(cos x)' sin x - (sin x)' cos x]/sin2x
= [-sin x. sin x - cos x. cos x]/sin2x
= (-sin2x - cos2x)/sin2x
= -1/sin2x
= -cosec2x
Therefore, d(cot x)/dx = -cosec2x |
Derivative of cosec x
We will determine the derivative of cosec x using the chain rule. We will use the following formulas and identities to calculate the derivative:
cosec x = 1/sin x
cot x = cos x/sin x
(sin x)' = cos x
(cosec x)' = (1/sin x)' = (-1/sin2x).(sin x)'
= (-1/sin2x).(cos x)
= -cos x/sin2x
= -(cos x/sin x).(1/sin x)
= -cot x cosec x
Therefore, d(cosec x)/dx = -cot x cosec x |
|