Cheatography

Basic Calculus Derivative of Trig Funcs Cheat Sheet by Zniv via cheatography.com/134254/cs/43319/

Trigonometric Identities	Derivatives of Trigonometric	Derivative of sec x (cont)	Derivative of cosec x
Reciprocal Trigonometric	Functions	sec x = 1/cos x	We will determine the derivative
Identities	If $f(x) = \sin x$, then $f'(x) = \cos x$	tan x = sin x/cos x	of cosec x using the chain rule.
Sin θ = 1/Csc θ or Csc θ = 1/Sin	If $f(x) = \cos x$, then $f'(x) = -\sin x$	$en f'(x) = -\sin x \qquad (\cos x)' = -\sin x$	We will use the following
θ	If $f(x) = \tan x$, then $f'(x) = \sec 2$	$(\sec x)' = (1/\cos x)' = (-1/\cos 2x).$	formulas and identities to
$\cos \theta = 1/\sec \theta$ or $\sec \theta =$	x	(cos x)'	calculate the derivative:
1/Cos θ	If $f(x) = \cot x$, then $f'(x) = -\csc 2$	$= (-1/\cos 2x) \cdot (-\sin x)$	cosec x = 1/sin x
Tan θ = 1/Cot θ or Cot θ = 1/Tan θ	х.	$= \sin x/\cos 2x \qquad \qquad \cos x = \cos x$ $= (\sin x/\cos x).(1/\cos x) \qquad (\sin x)' = \cos x$ $= \tan x \sec x \qquad (\csc x)'$	$(\sin x)' = \cos x$
	If $f(x) = \sec x$, then $f'(x) = \sec x$		$(\cos x)' = (1/\sin x)' = (-1/\sin x)'$
Pythagorean Trigonometric Identities	tan x	Therefore, d(sec x)/dx = tan x	n2x).(sin x)'
	If $f(x) = \csc x$, then $f'(x) = -\csc x$	$\sec x = (-1/\sin 2x).(\cos x)$	= (-1/sin2x).(cos x)
$\sin^2 a + \cos^2 a = 1$	x cot x		= -cos x/sin2x
$1+\tan^2 a = \sec^2 a$		Derivative of cot x	= -($\cos x/\sin x$).($1/\sin x$)
$cosec^2 a = 1 + cot^2 a$	Example 1	We will determine the derivative	= -cot x cosec x
Ratio Trigonometric Identities	$f(x) = \tan x$	of cot x using the quotient rule.	
Tan θ = Sin θ/Cos θ	sin r	We will use the following	X 00000 X
$\cot \theta = \cos \theta / \sin \theta$	$=\frac{\sin x}{\cos x}$	formulas and identifies to	
Sum and Difference of Angles	$f'(x) = \frac{\cos x \cdot \cos x - (-\sin x)s}{\sin x}$	$\sin x$ $\sin x$ $\sin x$ = cos x	
Trigonometric Identities	$\cos^2 x$	$(\cos x)' = -\sin x$	
$sin(\alpha+\beta)=sin(\alpha)\cos(\beta)+\cos(\alpha)s$	$=\frac{\cos^2 x + \sin^2 x}{\cos^2 x + \sin^2 x}$	$\cot x = \cos x / \sin x$	
in(β)	$\cos^2 x$	$\cos 2x + \sin 2x = 1$	
$sin(\alpha - \beta) = sin\alpha cos\beta - cos\alpha sin\beta$	$= -\frac{1}{2}$	cosec x = 1/sin x	
	cos x	$(\cot x)' = (\cos x/\sin x)'$	
$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$	$= \sec^2 x$	$= [(\cos x)' \sin x - (\sin x)' \cos x]$	
$\cos(\alpha-\beta)=\cos\alpha.\cos\beta+\sin\alpha.\sin\beta$		x]/sin2x	
Derivation Formula	Example 2	= $[-\sin x. \sin x - \cos x. \cos x]/\sin 2x$	
Derivation Formula	$\frac{1}{2}$ 2.2	$= (-\sin 2x - \cos 2x)/\sin 2x$	
Product Rule	$y = 3x^{2} \cot x + x^{3} (-\csc^{2} x)$ = $3x^{2} \cot x - x^{3} \csc^{2} x$	= -1/sin2x	
(d/dx) (fg)= fg' + gf'		= -cosec2x	
Quotient Rule		Therefore $d(\cot x)/dx = -$	

Therefore, $d(\cot x)/dx = -$

cosec2x

 $(d/dx) (f/g) = gf'-fg'/g^2$

Chain Rule

y = f(g(x)), then y' = f'(g(x)). g'(x)

$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$ $= \frac{1}{\cos^2 x}$ $= \sec^2 x$
Example 2
$y' = 3x^{2} \cot x + x^{3} (-\csc^{2} x)$ = $3x^{2} \cot x - x^{3} \csc^{2} x$
Examples
g (x) = 3 sec (x) - 10 cot (x)

Derivative of sin x

```
egin{aligned} rac{\mathrm{d}(\sin x)}{\mathrm{d}x} &= \lim_{h	o 0} rac{\sin(x+h) - \sin x}{(x+h) - x} \ &= \lim_{h	o 0} rac{\sin x \cos h + \cos x \sin h - \sin x}{h} \ &= \lim_{h	o 0} rac{\cos h - 1}{h} \sin x + rac{\sin h}{h} \cos x \ &= (0) \sin x + (1) \cos x \end{aligned}
                                   =(0)\sin x+(1)\cos x
                                     = \cos x
```

Derivative of cos x

$$\begin{aligned} \frac{\mathrm{d}(\cos x)}{\mathrm{d}x} &= \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{(x+h) - x} \\ &= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} \\ &= \lim_{h \to 0} \frac{\cos h - 1}{h} \cos x - \frac{\sin h}{h} \sin x \\ &= (0) \cos x - (1) \sin x \\ &= -\sin x \end{aligned}$$

Derivative of sec x

We will determine the derivative of sec x using the chain rule. We will use the following formulas and identities to calculate the derivative:

By **Zniv** cheatography.com/zniv/ Not published yet. Last updated 6th May, 2024. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com