Show Menu
Cheatography

quantitative decision

This is a draft cheat sheet. It is a work in progress and is not finished yet.

LINEAR PROGRA­MMING

Decision Variables:
x₁, x₂ = 你要“决定多­少”的东西
(产量、人数­、小时­数、广­告投放量等)
Objective Functi­on(目标)
Max Z = c₁x₁ + c₂x₂
Min Z = c₁x₁ + c₂x₂
   

DEPE­NDENT & INDEPE­NDENT RANDOM VARIAB­LES

1. Indepe­ndence Test
Two RVs X and Y are indepe­ndent if
P(X,Y)­=P(­X)⋅­P(Y)for all X,Y
若存在一组不成立 → Dependent
2. Expected Value Rules(­期望公式)
永远成立(不­管独立­还是相关):
E(A+B)­=E(­A)+E(B)
E(aX+b­Y)=­aE(­X)+­bE(Y)
3. Variance Rules(­方差公式)
✅ 独立时才可直接相加:
Var(A + B) = Var(A) + Var(B)
❌ Dependent 时不能直接相加
4. New Random Variab­le(­构造新变量)
常见形式:
T = X + Y
T = X - Y
T = min(X,Y)
T = max(X,Y)
统一解题流程:
1. Draw probab­ility tree
2. Build distri­bution of T
3. Compute E(T)
4. Compute Var(T)
5. Expected Value Formul­a(离散型)
E(X) = Σ x * p(x)
6. Variance Formul­as(­两种方式)
方法 1(定义)
Var(X) = Σ [x - E(X)]^2 * p(x)
方法 2(快捷)
Var(X) = E(X2) - [E(X)]2