This is a draft cheat sheet. It is a work in progress and is not finished yet.
LINEAR PROGRAMMING
Decision Variables: |
x₁, x₂ = 你要“决定多少”的东西 |
(产量、人数、小时数、广告投放量等) |
Objective Function(目标) |
Max Z = c₁x₁ + c₂x₂ |
Min Z = c₁x₁ + c₂x₂ |
|
|
|
|
|
|
DEPENDENT & INDEPENDENT RANDOM VARIABLES
1. Independence Test |
Two RVs X and Y are independent if |
P(X,Y)=P(X)⋅P(Y)for all X,Y |
若存在一组不成立 → Dependent |
2. Expected Value Rules(期望公式) |
永远成立(不管独立还是相关): |
E(A+B)=E(A)+E(B) |
E(aX+bY)=aE(X)+bE(Y) |
3. Variance Rules(方差公式) |
✅ 独立时才可直接相加: |
Var(A + B) = Var(A) + Var(B)
|
❌ Dependent 时不能直接相加 |
4. New Random Variable(构造新变量) |
常见形式: |
|
|
|
|
统一解题流程: |
1. Draw probability tree |
2. Build distribution of T |
3. Compute E(T) |
4. Compute Var(T) |
5. Expected Value Formula(离散型) |
|
6. Variance Formulas(两种方式) |
方法 1(定义) |
Var(X) = Σ [x - E(X)]^2 * p(x)
|
方法 2(快捷) |
|
|
|
|