Cheatography
https://cheatography.com
Reciprocal Identities
csc θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ |
Pythagorean Identities
sin²θ + cos²θ = 1
sec²θ = 1 + tan²θ
csc²θ = 1 + cot²θ |
Addition & Subtraction Formulas
sin(α±β) = sin(α) cos(β) ± sin(β) cos(α)
cos(α±β) = cos(α) cos(β) ∓ sin(β) sin(α)
tan(α±β) = tan(α) ± tan(β)
1 ∓ tan(α) tan(β) |
|
|
Corelated Angle Identities
sin(π/2 ± θ) = cos (θ)
cos(π/2 ± θ) = ∓sin (θ)
tan(π/2 ± θ) = ∓cot (θ)
sin(3π/2 ± θ) = -cos (θ)
cos(3π/2 ± θ) = ±sin (θ)
tan(3π/2 ± θ) = ∓cot (θ) |
Double Angle Formulas
sin(2θ) = 2 sin(θ) cos(θ)
cos(2θ) = cos²(θ) - sin²(θ)
= 2 cos²(θ) - 1
= 1 - 2 sin²(θ)
tan(2θ) = 2 tan(θ)
1 - tan²(θ) |
|
|
Quotient Identities
tan θ = sin θ/cos θ
cot θ = cos θ/sin θ |
Related Angle Identities
sin(π ∓ θ) = ±sin(θ)
cos(π ∓ θ) = -cos(θ)
tan(π ∓ θ) = ∓tan(θ)
sin(2π - θ) = -sin(θ)
cos(2π - θ) = cos(θ)
tan(2π - θ) = -tan(θ)
sin(-θ) = -sin(θ)
cos(-θ) = cos(θ)
tan(-θ) = -tan(θ) |
|
Created By
Metadata
Favourited By
Comments
No comments yet. Add yours below!
Add a Comment
Related Cheat Sheets