Show Menu
Cheatography

Reciprocal Identities

csc θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ

Pythag­orean Identities

sin²θ + cos²θ = 1
sec²θ = 1 + tan²θ
csc²θ = 1 + cot²θ

Addition & Subtra­ction Formulas

sin(α±β) = sin(α) cos(β) ± sin(β) cos(α)
cos(α±β) = cos(α) cos(β) ∓ sin(β) sin(α)
tan(α±β) = tan(α) ± tan(β)
      ­     1 ∓ tan(α) tan(β)
 

Corelated Angle Identities

sin(π/2 ± θ) = cos (θ)
cos(π/2 ± θ) = ∓sin (θ)
tan(π/2 ± θ) = ∓cot (θ)

sin(3π/2 ± θ) = -cos (θ)
cos(3π/2 ± θ) = ±sin (θ)
tan(3π/2 ± θ) = ∓cot (θ)

Double Angle Formulas

sin(2θ) = 2 sin(θ) cos(θ)
cos(2θ) = cos²(θ) - sin²(θ)
      ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­    = 2 cos²(θ) - 1
      ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­    = 1 - 2 sin²(θ)
tan(2θ) = 2 tan(θ)
      ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­   ­    1 - tan²(θ)
 

Quotient Identities

tan θ = sin θ/cos θ
cot θ = cos θ/sin θ

Related Angle Identities

sin(π ∓ θ) = ±sin(θ)
cos(π ∓ θ) = -cos(θ)
tan(π ∓ θ) = ∓tan(θ)

sin(2π - θ) = -sin(θ)
cos(2π - θ) = cos(θ)
tan(2π - θ) = -tan(θ)

sin(-θ) = -sin(θ)
cos(-θ) = cos(θ)
tan(-θ) = -tan(θ)

Help Us Go Positive!

We offset our carbon usage with Ecologi. Click the link below to help us!

We offset our carbon footprint via Ecologi
 

Comments

No comments yet. Add yours below!

Add a Comment

Your Comment

Please enter your name.

    Please enter your email address

      Please enter your Comment.

          Related Cheat Sheets

          Discrete Math Cheat Sheet
          JavaScript Object Methods Cheat Sheet