Cheatography
https://cheatography.com
Trigonometric identities and common trigonometric integrals. Note that θ is often interchangeable with x as a variable, excluding trigonometric substitutions. Most important formulas and identities are bolded.
Image Sources:
1. https://www.dummies.com/article/academics-the-arts/math/trigonometry/right-triangle-definitions-for-trigonometry-functions-157278/
2. https://andymath.com/unit-circle/
3. https://study.com/academy/lesson/graphing-tangent-from-the-unit-circle.html
Pythagorean Identities
sin2(x)+cos2(x)=1 |
sin2(x)=1-cos2(x) |
cos2(x)=1-sin2(x) |
|
tan2(x)+1=sec2(x) |
tan2(x)=sec2(x)-1 |
sec2(x)-tan2(x)=1 |
|
1+cot2(x)=csc2(x) |
cot2(x)=csc2(x)-1 |
csc2(x)-cot2(x)=1 |
The last two Pythagorean identities are obtained by dividing all the terms of the original identity by sin²(x) or cos²(x)
Trigonometric Substitutions
√(a2-x2) = asin(θ) |
√(x2-a2) = asec(θ) |
√(x2+a2) = atan(θ) |
|
|
Half-Angle and Double-Angle Identities
Sine Half-Angle |
sin(x/2)=√ ½(1-cos(x)) |
Cosine Half-Angle |
cos(x/2)=√ ½(1+cos(x)) |
Sine Power-Reducing |
sin2(x)=½(1-cos(2x)) |
Cosine Power-Reducing |
cos2(x)=½(1+cos(2x)) |
|
Sine Double Angle |
sin(2x)=2sin(x)cos(x) |
Cosine Double Angle 1 |
cos(2x)=cos2(x)-sin2(x) |
Cosine Double Angle 2 |
cos(2x)=2cos2(x)-1 |
Cosine Double Angle 3 |
cos(2x)=1-2sin2(x) |
Common Calculus II Integrals
∫sin(2x)dx |
-½cos(2x)+C |
∫cos(2x)dx |
½sin(2x)+C = sin(x)cos(x)+C |
∫tan(x)dx |
ln|sec(x)|+C |
∫sec(x)dx |
ln|sec(x)+tan(x)|+C |
∫sec3(x)dx |
½[ sec(x)tan(x)+ln|sec(x)+tan(x)| ]+C |
∫1/(1+x2)dx |
arctan(x)+C |
∫1/(a2+x2)dx |
(1/a)arctan(x/a)+C |
Sine and Cosine Unit Circle
|
|
Sum and Difference
sin(x+y)=sin(x)cos(y) + cos(x)sin(y) |
sin(x-y)=sin(x)cos(y) - cos(x)sin(y) |
cos(x+y)=cos(x)cos(y) - cos(x)sin(y) |
cos(x-y)=cos(x)cos(y) + cos(x)sin(y) |
Basic Trigonometric Integrals
∫sin(x)dx |
-cos(x)+C |
∫cos(x)dx |
sin(x)+C |
∫sec2(x)dx |
tan(x)+C |
∫sec(x)tan(x)dx |
sec(x)+C |
∫csc2(x)dx |
-cot(x)+C |
∫csc(x)cot(x)dx |
-csc(x)+C |
|
Created By
Metadata
Comments
No comments yet. Add yours below!
Add a Comment
Related Cheat Sheets
More Cheat Sheets by CROSSANT