Cheatography
https://cheatography.com
Trigonometric identities and common trigonometric integrals. Note that θ is often interchangeable with x as a variable, excluding trigonometric substitutions. Most important formulas and identities are bolded.
Image Sources:
1. https://www.dummies.com/article/academics-the-arts/math/trigonometry/right-triangle-definitions-for-trigonometry-functions-157278/
2. https://andymath.com/unit-circle/
3. https://study.com/academy/lesson/graphing-tangent-from-the-unit-circle.html
Basic Trigonometric Integrals
∫sin(x)dx |
-cos(x)+C |
∫cos(x)dx |
sin(x)+C |
∫sec2(x)dx |
tan(x)+C |
∫sec(x)tan(x)dx |
sec(x)+C |
∫csc2(x)dx |
-cot(x)+C |
∫csc(x)cot(x)dx |
-csc(x)+C |
Common Trigonometric Integrals
∫sin(2x)dx |
-½cos(2x)+C |
∫cos(2x)dx |
½sin(2x)+C = sin(x)cos(x)+C |
∫tan(x)dx |
ln|sec(x)|+C |
∫sec(x)dx |
ln|sec(x)+tan(x)|+C |
∫sec3(x)dx |
½(sec(x)tan(x)+ln|sec(x)+tan(x)|)+C |
∫csc(x)dx |
-ln|csc(x)+cot(x)|+C |
∫csc3(x)dx |
-½(csc(x)cot(x)+ln|csc(x)+cot(x)|)+C |
∫1/(1+x2)dx |
arctan(x)+C |
∫1/(a2+x2)dx |
(1/a)arctan(x/a)+C |
Secant and Cosecant Integrals
Secant Integral 1 |
∫sec(x)dx = ln|sec(x)+tan(x)|+C |
Secant Integral 2 |
∫sec(x)dx = -ln|sec(x)-tan(x)|+C |
Secant Integral 3 |
∫sec(x)dx = ½ln|(sin(x)+1)/(sin(x)-1)|+C |
Secant Integral 4 |
∫sec(x)dx = ln|tan(x/2+π/4)|+C |
Cosecant Integral 1 |
∫csc(x)dx = ln|csc(x)-cot(x)|+C |
Cosecant Integral 2 |
∫csc(x)dx = -ln|csc(x)+cot(x)|+C |
Cosecant Integral 3 |
∫csc(x)dx = ½ln|(cos(x)-1)/(cos(x)+1)|+C |
Cosecant Integral 4 |
∫csc(x)dx = ln|tan(x/2)|+C |
Sine and Cosine Unit Circle
|
|
Powers of Trigonometric Functions
Quotient and Reciprocal Identities
Tangent Quotient |
tan(x)=sin(x)/cos(x) |
Cotangent Quotient |
cot(x)=cos(x)/sin(x) |
|
Sine Reciprocal |
sin(x)=1/csc(x) |
Cosine Reciprocal |
cos(x)=1/sec(x) |
Tangent Reciprocal |
tan(x)=1/cot(x) |
Cosecant Reciprocal |
csc(x)=1/sin(x) |
Secant Reciprocal |
sec(x)=1/cos(x) |
Cotangent Reciprocal |
cot(x)=1/tan(x) |
Pythagorean Identities
Sine-Cosine Pythagorean |
sin2(x)+cos2(x)=1 |
Sine Pythagorean |
sin2(x)=1-cos2(x) |
Cosine Pythagorean |
cos2(x)=1-sin2(x) |
Secant Pythagorean |
tan2(x)+1=sec2(x) |
Tangent Pythagorean |
tan2(x)=sec2(x)-1 |
Secant-Tangent Pythagorean |
sec2(x)-tan2(x)=1 |
Cosecant Pythagorean |
1+cot2(x)=csc2(x) |
Cotangent Pythagorean |
cot2(x)=csc2(x)-1 |
Cosecant-Cotangent Pythagorean |
csc2(x)-cot2(x)=1 |
The last two triplets of Pythagorean identities are obtained by dividing all the terms of the original identity by sin²(x) or cos²(x)
Sum and Difference Identities
sin(x+y)=sin(x)cos(y) + cos(x)sin(y) |
sin(x-y)=sin(x)cos(y) - cos(x)sin(y) |
cos(x+y)=cos(x)cos(y) - sin(x)sin(y) |
cos(x-y)=cos(x)cos(y) + sin(x)sin(y) |
Right-Triangle Trigonometric Relations
|
|
Trigonometric Substitutions
a2-x2 |
Let x=asin(θ) |
dx=acos(θ)dθ |
x2-a2 |
Let x=asec(θ) |
dx=asec(θ)tan(θ)dθ |
x2+a2 |
Let x=atan(θ) |
dx=asec2(θ)dθ |
a2-b2x2 |
Let x=(a/b)sin(θ) |
dx=(a/b)cos(θ)dθ |
b2x2-a2 |
Let x=(a/b)sec(θ) |
dx=(a/b)sec(θ)tan(θ)dθ |
b2x2+a2 |
Let x=(a/b)tan(θ) |
dx=(a/b)sec2(θ)dθ |
Trigonometric substitutions are typically used under radicals, however, they are not required to be
For definite integrals, you will need to set x equal to its respective bounds, and solve for θ in order to properly change the bounds of integration with respect to θ
Half-Angle and Double-Angle Identities
Sine Half-Angle |
sin(x/2)=√(½(1-cos(x))) |
Cosine Half-Angle |
cos(x/2)=√(½(1+cos(x))) |
Sine Power-Reducing |
sin2(x)=½(1-cos(2x)) |
Cosine Power-Reducing |
cos2(x)=½(1+cos(2x)) |
|
Sine Double-Angle |
sin(2x)=2sin(x)cos(x) |
Cosine Double-Angle 1 |
cos(2x)=cos2(x)-sin2(x) |
Cosine Double-Angle 2 |
cos(2x)=2cos2(x)-1 |
Cosine Double-Angle 3 |
cos(2x)=1-2sin2(x) |
Sine Power-Reducing and Cosine Power-Reducing identities are variations of the Half-Angle identities
|
Created By
Metadata
Comments
kdawg, 15:25 15 Feb 24
Hey, just stumbled across this. This is AMAZING! Very succinct and has every Trig thing I would need! Just wanted to note, I noticed some overlapping in the Pythagorean Identities Section. It only cuts off stuff on the right of the column. They can be derived from the other stuff, so not a big deal, just noticed! :)
CROSSANT, 13:13 22 Feb 24
Thank you so much!!! I have now edited it to display clearer. I'm glad the cheat sheet was useful!
Add a Comment
Related Cheat Sheets
More Cheat Sheets by CROSSANT