| Creating, Reading, Writing
                        
                                                                                    
                                                                                            | df = pd.DataFrame({"col0": [val0, val1], "col1": [val0, val1]}, index=[0, 1]) | Create a dataframe |  
                                                                                            | series = pd.Series(["val0", "val1", "val2"], index=[0, 1, 2, 3], name="name") | Create a series |  
                                                                                            | read = pd.read_csv("../folder/folder/file.csv", index_col=0) | Read a csv |  
                                                                                            | save.to_csv("file.csv") | Save an existing dataframe as a csv |  Indexing, Selecting, Assigning
                        
                                                                                    
                                                                                            | table.head | Show first 5 rows of a dataframe |  
                                                                                            | table["col"] | Select the col from table |  
                                                                                            | table.col.iloc[0] | Select 1st value of a col from table |  
                                                                                            | table.iloc[0] | Select 1st row of data from table |  
                                                                                            | table.col.iloc[:10] | Select 1st 10 values from col in table (index-based select) |  
                                                                                            | table.col.loc[:10] | Select 1st 10 values from col in table (label-based select) |  
                                                                                            | table.loc[indices, cols] | Select certain rows from certain cols |  
                                                                                            | table[table.col == 'val'] | Select cols have a certain val (conditional select) |  
                                                                                            | table.col.isin(['val1,' 'val2']) | Select cols have certain vals (conditional select) |  Summary Functions & Maps
                        
                                                                                    
                                                                                            | table.col.describe() | Get high-lvl summary of given col's attributes |  
                                                                                            | table.col.mean() | Get mean of a col with numerical vals |  
                                                                                            | table.col.unique() | Get each unique val of a col w/ no dupes |  
                                                                                            | table.col.value_counts() | Get frequency of each val in col |  
                                                                                            | table.col.map(lambda p: p - s) | Map function to remap a Series of point vals (p) by using a transformation (p-s) -> returns new Series |  
                                                                                            | table.apply(func, axis='columns') | Apply function to transform entire df by calling custom method (func taking a row) on each row |  |  | Grouping & Sorting
                        
                                                                                    
                                                                                            | table.groupby('col').col.count() | Group data w/ same vals in the given col -> count frequency of given col (same as value_counts()) |  
                                                                                            | table.groupby('col').size() | Same as above |  
                                                                                            | table.groupby('col').apply(lambda df: df.title.iloc[0]) | Select name (title) of the 1st thing in col |  
                                                                                            | table.col.idxmax() | Get index of max val in col |  
                                                                                            | table.groupby(['col0']).col1.agg([f1, f2, f3]) | agg() runs diff. funcs. simultaneously on a df |  
                                                                                            | table.groupby(['col0', 'col1']).col2.agg([len]) | Multi-index output has tiered structure. Require 2 levels of labels to retrieve a val |  
                                                                                            | df.reset_index() | Muti-index method used to converting back to regular index |  
                                                                                            | df.sort_values(by='col') | Sort rows of data by vals in col (ascending) |  
                                                                                            | df.sort_values(by='col', ascending=False) | Sort rows of data by vals in col (descending) |  
                                                                                            | df.sort_values(by=['col0', 'col1']) | Sort rows by more than 1 col at a time |  
                                                                                            | df.sort_index() | Sort rows by index (default order; ascending) |  Data Types & Missing Values
                        
                                                                                    
                                                                                            | table.col.dtype | Get data type of a col |  
                                                                                            | table.dtypes | Get data types of each col in table |  
                                                                                            | table.col.astype('datatype') | Convert col to datatype if allowed (e,g, int64 -> float64) |  
                                                                                            | table.index.dtype | Number indices are int64 |  
                                                                                            | table[pd.isnull(table.col)] | Select NaN entries in a col |  
                                                                                            | table.col.fillna("filler") | Replace all NaN vals in a col with a sentinel val ("Unknown", "Undisclosed", "Invalid") or non-null val |  
                                                                                            | table.col.replace("init_val", "new_val") | Replace, in col, all existing vals with new_vals |  Renaming & Combining
                        
                                                                                    
                                                                                            | table.rename(columns={'init': 'new'}) | Rename col or index col names |  
                                                                                            | table.rename(index={0: 'firstEntry', 1: 'secondEntry}) | Rename index or col vals by specifying an index or col param |  
                                                                                            | table.rename_axis("name", axis='rows').rename_axis("name1", axis='columns') | Rename row index &/or col index |  
                                                                                            | pd.concat(list, of, els) | Smush together the list of elements along an axis |  
                                                                                            | left.join(right, lsuffix='strL', rsuffix='strR') | Combine diff df objects that have an index in common. left and right are df.s defined beforehand |  |