This is a draft cheat sheet. It is a work in progress and is not finished yet.
Discriminant
b²-4ac > 0 |
2 real roots |
b²-4ac = 0 |
1 repeated root |
b²-4ac < 0 |
2 imaginary roots |
Supplementary & Complementary Angles
supplementary angles |
add up to 180° |
complementary angles |
add up to 90° |
45-45-90 triangles
a=b |
c=a√2 or b√2 |
c/√2=a or b |
30-60-90 triangles
when a triangle's 3 angles are 30°, 60°, and 90°
a = long leg
b = short leg
c = hypotenuse
SOH-CAH-TOA
sine |
opposite/hypotenuse |
cosine |
adjacent/hypotenuse |
tangent |
opposite/adjacent |
csc, sec, cot - the opposite of SOH-CAH-TOA
cosecant |
hypotenuse/opposite |
secant |
hypotenuse/adjacent |
cotangent |
adjacent/opposite |
|
|
Circle Measurements
area |
πr² |
diameter |
2r |
circumference |
2πr OR πd |
arc length |
θr |
r = radius
d = diameter
θ = angle
Degrees & Radians
degrees to radians |
θ·π/180 |
radians to degrees |
θ·180/π |
Unit Circle values
sin |
y |
cos |
x |
tan |
y/x |
csc |
1/y |
sec |
1/x |
cot |
x/y |
for tan & cot, only use the tops of the fractions
y = a (sin) b (x - c) + d
a |
amplitude change |
b |
period change |
c |
horizontal change: + = left, - = right |
d |
vertical change: + = up, - + down |
-sin(x) |
reflection across x-axis |
sin(-x) |
reflection across y=axis |
Amplitude & Period
amplitude |
vertical |
period |
horizontal |
both always positive
tan, cos, sec, cot: no amplitude
|
|
Inverses
csc(x) = 1/sin(x)
restricting range: usually I & IV
except in cos⁻¹: I & II
Reciprocal Identities
sinθ = 1/cscθ |
cscθ = 1/sinθ |
cosθ = 1/secθ |
secθ = 1/cosθ |
tanθ = 1/cotθ |
cotθ = 1/tanθ |
Ratio Identities
tanθ = sinθ/cosθ |
cotθ = cosθ/sinθ |
Pythagorean Identities
sin²θ + cos²θ = 1 |
tan²θ + 1 = sec²θ |
1 + cos²θ = csc²θ |
Double-Angle Identities
sin2θ = 2sinθcosθ |
tan2θ = 2tanθ / 1-tan²θ |
cos2θ = cos²θ - sin²θ
cos2θ = 1 - 2sin²θ
cos2θ = 2cos²θ - 1
some more identities
sin(a+b) = sin(a)cos(b) + cos(a)sin(b) |
sin(a-b) = sin(a)cos(b) - cos(a)sin(b) |
cos(a+b) = cos(a)cos(b) - sin(a)sin(b) |
cos(a-b) = cos(a)cos(b) + sin(a)sin(b) |
tan(a+b) = tan(a)+tan(b) / 1-tan(a)tan(b)
tan(a-b) = tan(a)+tan(b) / 1+tan(a)tan(b)
|