Show Menu
Cheatography

Algebra, Calculus I & II Cheat Sheet (DRAFT) by

I'll put everything I need to memorize for my math classes in this cheat sheet. It includes things from basic algebra, to limits, to derivatives and finally integrals.

This is a draft cheat sheet. It is a work in progress and is not finished yet.

Deriva­tives

Expression
Derivative
f(x)=k
f'(x)=0
f(x)=x
f'(x)=1
f(x)=xa
f'(x)=axa-1
f(x)=ax
f'(x)=ax lna
f(x)=kx
f'(x)=k
f(x)=1/x
f'(x)=-1/x2
f(x)=ln x
f'(x)=1/x
f(x)=eu
f'(x)=u'.eu
f(x)=logaX
f'(x)=1/x lna
f(x)=s­en(x)
f'(x)=­cos(x)
f(x)=s­ec(x)
f'(x)=­sec­(x).tan(x)
f(x)=a­rcs­en(x)
f'(x)=­1/√1-x2
f(x)=c­os(x)
f'(x)=­-sen(x)
f(x)=c­sc(x)
f'(x)=­-cs­c(x­).c­tg(x)
f(x)=a­rcc­os(x)
f'(x)=­-1/√1-x2
f(x)=t­an(x)
f'(x)=sec2(x)
f(x)=c­tg(x)
f'(x)=-csc2(x)
f(x)=a­rct­an(x)
f'(x)=­1/1+x2

Integrals

∫xkdx
(xk+1)/(k+1) + C
∫x-1dx
ln|x| + C
∫dx
x + C
∫kF(x)dx
k∫F(x)dx
∫[F(x)­±∫G(x)]
∫F(x)dx ± ∫G(x)dx
∫ekxdx
(1/k)ekx + C
∫akxdx
akx/[kLn(a)] + C
∫sen(kx) dx
-(1/k) cos(kx) + C
∫cos(kx) dx
1/k sen(kx) + C
∫sec(kx) dx
1/k(Ln­|se­c(kx) + tan(kx)|) + C
∫Tan(kx) dx
-(1/k) Ln|cos­(kx)| + C
∫csc(kx) dx
1/k Ln |csc(kx) - cot(kx)| + C
∫cot(kx) dx
1/k Ln |sen(kx)| + C
∫sec(kx) dx
1/k sec(kx) + C
∫csc(kx) cot(kx) dx
-1/k csc(kx) + C
∫sex2(kx) dx
1/k tan(kx) + C
∫csc2(kx) dx
-1/k cot(kx) + C
 

Quadratic formula

Factoring

(a + b)2
a2 + 2ab + b2
(a - b)2
a2 - 2ab + b2
a2 - b2
(a - b) (a + b)
(a + b)3
a3 + 3a2b + 3ab2 + b3
(a - b)3
a3 - 3a2b + 3ab2 - b3
a3 - b3
(a - b)^3 + 3ab (a - b)
a3 + b3
(a + b)3 - 3a b (a + b)

Factoring

Given x^2+ax­+b=0, then you have to find two numbers that when multiplied give you B and added give you a.
Example:
x^2+4x+3, turns into: (x+3)(x+1)

Absolute value propertie

|x|>a
x>a or a<-a
|x|<a
-a<­x<a

Divisions with 0

0/n
0
n/∞
0
n/0

Logs properties

logaBn
nlogaB
logaA=lne
1
loga1=ln1
0
loga(m.n)
logaM + logaN
loga(m/n)
logaM - logaM

Expone­ntial properties

a0
1
a1
a
am . an
am+n
am / an
am-n
(a.b)n
an . bn
(a/b)n
an/bn
(am)n
am.n
an/m
raiz m de an
a-1
1/a
 

Trigon­ome­trical identities

sen² α + cos² α = 1
sec² α = 1 + tg² α
cosec² α = 1 + cotg² α
tan α = senα/cosα
tan² α +1 = sec² α
cot² α +1 = csc² α
sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
cos(x + y) = cos(x) cos(y) − sin(x) sin(y)
tan(x + y) = (tan(x) + tan(y))/(1 − tan(x) tan(y))
sin(x − y) = sin(x) cos(y) − cos(x) sin(y)
cos(x − y) = cos(x) cos(y) + sin(x) sin(y)
tan(x − y) = (tan(x) − tan(y))/(1 + tan(x) tan(y))
sin (2 x) = 2 sin (x) cos (x)
cos (2 x) = cos2 (x) − sin2 (x)
cos (2 x) = 2 cos2 (x) − 1
tan (2 x) = (2 tan (x))/(1 − tan2 (x))
sin2 (x) = 1/2 (1 − cos (2 x))
cos2 (x) = 1/2 (1 + cos (2 x))
sin (x) cos (x) = 1/2 sin (2 x)
sin (x) sin (y) = 1/2 (cos (x − y) − cos (x + y))
sin (x) cos (y) = 1/2 (sin (x − y) + sin (x + y))
cos (x) cos (y) = 1/2 (cos (x − y) + cos (x + y))
csc(x) = 1/sin(x)
sec(x) = 1/cos(x)
cot(x) = cos(x)­/tan(x)
sin(−x) = − sin(x)
cos(−x) = cos(x)
tan(−x) = − tan(x)