Show Menu
Cheatography

nvidia tlt Cheat Sheet by

for nvidia transfer learning

Introd­uction

NVIDIA Transfer Learning Toolkit (TLT) is a simple, easy-t­o-use training toolkit that requires minimal to zero coding to create vision AI models using the user’s own data. This cheatsheet is created by Ness, version 2020.1­1.14.

tlt stack

tlt modles

tlt workflow

 

tlt-au­gment

-d /path/­to/­the­/da­tas­et/root
-a /path/­to/­aug­men­tat­ion­/sp­ec/file
-o /path/­to/­the­/au­gme­nte­d/o­utput
[-v]

tlt-da­tas­et-­convert

-d DATASE­T_E­XPO­RT_SPEC
-o OUTPUT­_FI­LENAME
[-f VALIDA­TIO­N_FOLD]

spec files

 

tlt-train

classi­fic­ation --gpus <num GPUs>
-k <en­coding key>
-r <result direct­ory>
-e <spec file>

tlt-ev­aluate classi­fic­ation

-e <ex­per­ime­nt_­spe­c_f­ile>
-k <ke­y>

tlt-ev­aluate detect­net_v2

-e <ex­per­ime­nt_­spe­c_f­ile>
-m <mo­del­_fi­le>
-k <ke­y>
[--use­_tr­ain­ing­_set]

tlt-prune

tlt-prune [-h]
-pm <pr­etr­ain­ed_­mod­el>
-o <ou­tpu­t_f­ile> -k <ke­y>
[-n <no­rma­liz­er>]
[-eq <eq­ual­iza­tio­n_c­rit­eri­on>]
[-pg <pr­uni­ng_­gra­nul­ari­ty>]
[-pth <pr­uning thresh­old­>]
[-nf <mi­n_n­um_­fil­ter­s>]
[-el [<e­xcl­ude­d_l­ist­>]
 

tlt-in­t8-­ten­sorfile

tlt-in­t8-­ten­sorfile {class­ifi­cation, detect­net_v2} [-h]
-e <path to training experiment spec file>
-o <path to output tensor­fil­e>
-m <ma­ximum number of batches to serial­ize>
[--use­_va­lid­ati­on_set]

tlt-export

tlt-export [-h] {class­ifi­cation, detect­net_v2, ssd, dssd, faster­_rcnn, yolo, retinanet}
-m <path to the .tlt model file generated by tlt train>
-k <ke­y>
[-o <path to output file>]
[--cal­_da­ta_file <path to tensor file>]
[--cal­_im­age_dir <path to the directory images to calibrate the model]
[--cal­_ca­che­_file <path to output calibr­ation file>]
[--dat­a_type <Data type for the TensorRT backend during export­>]
[--batches <Number of batches to calibrate over>]
[--max­_ba­tch­_size <ma­ximum trt batch size>]
[--max­_wo­rks­pac­e_size <ma­ximum workspace size]
[--bat­ch_size <batch size to TensorRT engine­>]
[--exp­eri­men­t_spec <path to experiment spec file>]
[--eng­ine­_file <path to the TensorRT engine file>]
[--verbose Verbosity of the logger]
[--for­ce_ptq Flag to force PTQ]

Help Us Go Positive!

We offset our carbon usage with Ecologi. Click the link below to help us!

We offset our carbon footprint via Ecologi
 

Comments

No comments yet. Add yours below!

Add a Comment

Your Comment

Please enter your name.

    Please enter your email address

      Please enter your Comment.