This is a draft cheat sheet. It is a work in progress and is not finished yet.
Discrete Distributions
Name |
pmf |
cdf |
E(V);Var |
Bernoulli(p) |
P(1)=p; P(0)=1-p |
F(1)=1, F(0)=1-p |
p;p(1-p) |
Binomial(n,p) |
P(k)=(NchooseK) pk (1-p)(n-k) |
- |
np;np(1-p) |
Geometric(p) |
P(k)=(1-p)k-1 p |
1 - (1-p)k |
(1-p)/p; (1-p)/p2 |
Poisson(λ) |
P(k)=e-λ λk/k! |
- |
λ;λ |
Continuous Distributions
Name |
pdf |
cdf |
EV;Var |
Uniform[a,b] |
f(x)= 1/(b-a) on [a,b] |
F(x)=(x-a)/(b-a) on [a,b] |
(b-a)/2; (b-a)2/12 |
Normal(μ,σ2) |
- |
- |
μ;σ2 |
Exponential(λ) |
f(x)=λe-λx |
1 - e-λx |
1/λ;1/λ2 |
Set theory
De Morgan's laws
(A∪B)c=Ac∩Bc &&&& (A∩B)c=Ac∪Bc
Distributive laws:
(A∪B)∩C = (A∩C)∪(B∩C) &&&& (A∩B)∪C = (A∪C)∩(B∪C) |
Probability
P(A∪B) = P(A) +P(B)−P(A∩B)
NchooseK = n!/(k)!(n-k)!
De totale kans is altijd 1! I.h.b. P(A)+P(Ac)=1 |
Conditional Probability
P(A|B) =P(A∩B)/P(B)
A&B independent ⇒ P(A∩B) = P(A)P(B) & P(A|B)=P(A)
Bayes' Theorem: P(A|B) = P(B|A)P(A)/P(B) |
Er zijn n kleuren, ik kies er k. Ik heb ... opties
- |
Volgorde maakt uit |
Volgorde maakt niet uit |
Kleuren mogen dubbel |
nk |
(n-1+k)!/(n-1)!k! |
Kleuren mogen niet dubbel |
n!/(n-k)! |
n!/k!(n-k)! |
|
|
|