Linear Regression
# Import and create the model:
from sklearn.linear_model import LinearRegression
your_model = LinearRegression()
# Fit:
your_model.fit(x_training_data, y_training_data)
# .coef_: contains the coefficients
# .intercept_: contains the intercept
# Predict:
predictions = your_model.predict(your_x_data)
#.score(): returns the coefficient of determination R²
|
Naive Bayes
# Import and create the model:
from sklearn.naive_bayes import MultinomialNB
your_model = MultinomialNB()
# Fit:
your_model.fit(x_training_data, y_training_data)
# Predict:
# Returns a list of predicted classes - one prediction for every data point
predictions = your_model.predict(your_x_data)
# For every data point, returns a list of probabilities of each class
probabilities = your_model.predict_proba(your_x_data)
|
K-Nearest Neighbors
# Import and create the model:
from sklearn.neigbors import KNeighborsClassifier
your_model = KNeighborsClassifier()
# Fit:
your_model.fit(x_training_data, y_training_data)
# Predict:
# Returns a list of predicted classes - one prediction for every data point
predictions = your_model.predict(your_x_data)
# For every data point, returns a list of probabilities of each class
probabilities = your_model.predict_proba(your_x_data)
|
|
|
K-Means
# Import and create the model:
from sklearn.cluster import KMeans
your_model = KMeans(n_clusters=4, init='random')
n_clusters: number of clusters to form and number of centroids to generate
init: method for initialization
k-means++: K-Means++ [default]
random: K-Means
random_state: the seed used by the random number generator [optional]
# Fit:
your_model.fit(x_training_data)
# Predict:
predictions = your_model.predict(your_x_data)
|
Validating the Model
# Import and print accuracy, recall, precision, and F1 score:
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
print(accuracy_score(true_labels, guesses))
print(recall_score(true_labels, guesses))
print(precision_score(true_labels, guesses))
print(f1_score(true_labels, guesses))
# Import and print the confusion matrix:
from sklearn.metrics import confusion_matrix
print(confusion_matrix(true_labels, guesses))
|
Training Sets and Test Sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2)
# train_size: the proportion of the dataset to include in the train split
# test_size: the proportion of the dataset to include in the test split
# random_state: the seed used by the random number generator [optional]
|
|
Created By
Metadata
Comments
No comments yet. Add yours below!
Add a Comment
Related Cheat Sheets