Show Menu
Cheatography

Calculus Derivatives and Differentiation Cheat Sheet by

Derivatives rules and common derivatives from Single-Variable Calculus. Most important rules/derivatives are bolded.

Notation

Name
Operation
y versions
f(x) versions
Compos­ition versions
Second derivative
nth derivative
Leibni­z/F­raction Notation
d/dx (f(x))­=d/dx (y)
dy/dx=dy(x)/dx
df/dx=­df(­x)/­dx=­d(f­(x))/dx
df/dg*­dg/dx
d2f/dx2
dn/dxn=dnf/dxn
Lagran­ge/­Prime Notation
d/dx (f(x))­=d/dx (y)
y'
f'=f'(x)=(f(x))'
(f(g(x)))'
y''
fn(x)
Newton/Dot Notation
d/dt (f(t))­=d/dt (y(t))
   
ÿ
Euler/­D-N­otation
Dx(f)
Dy
Df
D(f(g))
D2f
Dnf
n ∈ ℕ1 = {1,2,3­­,4­,­5­,...}

Derivative Rules

Formal­/Limit Definition of a Derivative
f'(x)=lim h->0 (f(x+h­)-f­(x))/h
Limit Definition of the Derivative at a point
f'(a)=lim h->0 (f(a+h­)-f­(a))/h
f'(a)=lim x->a (f(x)-­f(a­))/­(x-a)
Linearity 1: Consta­nt-­Mul­tiple Rule
d/dx (kf(x))
k*d/dx (f)
kf'
Linearity 2: Sum/Di­ffe­rence Rule
d/dx (f(x)±­g(x))
d/dx (f) ± d/dx (g)
f'±g'
Product Rule
d/dx (f(x)*­g(x))
f'g+fg'
Multi-­Product Rule
d/dx (p(x)*­q(x­)*r­(x)­*s(­x)*...)
p'qrs... + pq'rs... + pqr's... + pqrs'... + ...
pqrs...*(p'/p + q'/q + r'/r + s'/s + ...)
Quotient Rule
d/dx (f(x)/­g(x))
(f'g-f­g')/g2
g(x)≠0, quotients can be rewritten into products with sign-f­lipped exponents
Chain Rule
d/dx (f(g(x)))
f'(g)g'
Multi-­Chain Rule
d/dx (p(q(r­(s(...)­))))
p'(q(r­(s(...)­))­)*q­'(r­(s(...)­))­*r'­(s(...)­)*­s'(...)­*...
First Fundam­ental Theorem of Calculus (FTC I)
d/dx (∫ax f(t)dt)
f(x)
Deriva­tives and integrals are inverses of each other
FTC I Chain Rule 1
d/dx (∫av(x) f(t)dt)
f(v)v'
FTC I Chain Rule 2
d/dx (∫u(x)v(x) f(t)dt)
f(v)v'­-f(u)u'
Summation Rule
d/dx (Σf(x))
Σf'(x)
The summation must be within its interval of conver­gence
a and k are constants
f, g, p, q, r, s, u, and v are functions of x such that f=f(x), g=g(x), p=p(x), q=q(x), r=r(x), s=s(x), u=u(x), and v=v(x), unless otherwise shown

Deriva­tives of Algebraic Functions

Rule
Function Derivative
Derivative
nth Derivative of Function
nth Derivative
Function Compos­ition
Derivative by Chain Rule
Constant
d/dx (k)
0
dn/dxn (k)
0
d/dx (f(k))
0
Power
d/dx (xk)
kxk-1
dn/dxn (xk), k≠0, k-n+1≠-n
Γ(k+1)xk-n/Γ(k-n+1)
d/dx (u(x)k), u(x)≠0
kuk-1u'
Natural Expone­ntial
d/dx (ex)
ex
dn/dxn (ex)
ex
d/dx (eu(x))
euu'
Natural Logarithm
d/dx (ln(x))
1/x
dn/dxn (ln(x))
(-1)n+1(n-1)!/xn
d/dx (ln(u(x))), u(x)>0
u'/u
General Expone­ntial
d/dx (kx), k>0
kxln(k)
dn/dxn (kx), k>0
kx(ln(k))n
d/dx (ku(x)), k>0
kuln(k)u'
General Logarithm
d/dx (logk(x)), k>0, k≠1
1/(xln(k))
dn/dxn (logk(x)), k>0, k≠1
(-1)n+1(n-1)!/(xnln(k))
d/dx (logₖ(­u(x))), k>0, k≠1, u(x)≠0
u'/(ul­n(k))
Absolute Value
d/dx (|x|)
x/|x|
   
d/dx (|u(x)|), u(x)≠0
u'*u/|u|
Functi­on-­Pow­er-­Fun­ction
d/dx (f(x)g(x)), f(x)>0
fg(f'g/f­+ln­(f)g')
k is a constant
f=f(x), g=g(x), and u=u(x) are all functions of the variable x
m, n ∈ ℕ1 = {1,2,3­,4,­5,...}
Γ(x) is the gamma function, which defines factorials for negati­ve/­non­-in­teger numbers
x! = Γ(x+1)
n!=n(n­­-1­)­!­=n­­(n-­­1)­(­n­-2­­)!=­­n(­n­-­1)­­(n-­­2)­(­n­-3­­)!=...
n! = n(n-1)­­(n­-­2­)(­­n-3­­)...*­3*2*1
0!=1, 1!=1

Deriva­tives of Trigon­ometric Functions

Standard Trigon­ometric
Derivative
Inverse Trigon­ometric
Derivative
Hyperbolic Trigon­ometric
Derivative
Hyperbolic Inverse Trigon­ometric
Derivative
d/dx (sin(x))
cos(x)
d/dx (arcsi­n(x))
1/√(1-x2)
d/dx (sinh(x))
cosh(x)
d/dx (arcsi­nh(x))
1/√(1+x2)
d/dx (cos(x))
-sin(x)
d/dx (arcco­s(x))
-1/√(1-x2)
d/dx (cosh(x))
sinh(x)
d/dx (arcco­sh(x))
-1/√(x2-1)
d/dx (tan(x))
sec2(x)
d/dx (arcta­n(x))
1/(1+x2)
d/dx (tanh(x))
sech2(x)
d/dx (arcta­nh(x))
1/(1-x2)
d/dx (csc(x))
-csc(x­)cot(x)
d/dx (arccs­c(x))
-1/(|x|√(x2-1))
d/dx (csch(x))
-csch(­x)c­oth(x)
d/dx (arccs­ch(x))
-1/(|x|√(x2+1))
d/dx (sec(x))
sec(x)­tan(x)
d/dx (arcse­c(x))
1/(|x|√(x2-1))
d/dx (sech(x))
-sech(­x)t­anh(x)
d/dx (arcse­ch(x))
-1/(|x­|√(1-x2))
d/dx (cot(x))
-csc2(x)
d/dx (arcco­t(x))
-1/(1+x2)
d/dx (coth(x))
-csch2(x)
d/dx (arcco­th(x))
1/(1-x2)
dn/dxn (sin(x)) = sin(x+­nπ/2)
dn/dxn (cos(x)) = cos(x+­nπ/2)
sinh(x) = (ex-e-x)/2
cosh(x) = (ex+e-x)/2
arcsinh(x) = ln(x+√(x2+1))
arccosh(x) = ln(x+√(x2-1)), x≥1

Polynomial Derivative Examples

d/dx (x)
1
d/dx (x^2)
2x
d/dx (x^3)
3x2
d/dx (x^4)
4x3
d/dx (1/x)
-1/x2
d/dx (-1/x2)
2/x3
d/dx (2/x3)
-6/x4
d/dx (-6/x4)
24/x5
d/dx (√x)
1/(2√x)
d/dx (x1/3)
1/(3x2/3)
d/dx (x1/4)
1/(4x3/4)
d/dx (x3/2)
3√x/2
d/dx (x5/3)
5x2/3/3
d/dx (x-√2-3)
(-√2-3)x-√2-4
d/dx (1/(1+x))
-1/(1+x)2
d/dx (-1/(1+x)2)
2/(1+x)3
d/dx (-1/(1-x))
-1/(1-x)2
d/dx (-1/(1-x)2)
-2/(1-x)3
d/dx (√(5x+1))
5/(2√(­4x+1))
d/dx (√(x5+1))
5x4/(2√(x5+1))
d/dx ((2x2+5)9)
36x(2x2+5)8
d/dx (1)
0

Specia­l/Other Derivative Examples

d/dx (exsin(x))
exsin(x)+excos(x)
d/dx (excos(x))
excos(x)-exsin(x)
d/dx (sinx(x))
sinx(x)(ln­(si­n(x­))+­xco­t(x))
d/dx (sin(x)cos(x))
sin(x)cos(x)(cos2(x)csc­­(x­)­-­si­­n(x­­)l­n­(­si­­n(x)))
d/dx (ln(1/­(1-x)))
1/(1-x)
d/dx (ln(x3+7x+12))
(3x2+7)/(x3+7x+12)
d/dx (ln(e3xtan(x3)))
3+(3x2sec2(x3))/(tan(x3))
d/dx (1+k+t­+√2­+co­s(a­)+e­+π+­ln(3))
0
 

Trigon­ometric Derivative Examples

d/dx (-sin(x))
-cos(x)
d/dx (-cos(x))
sin(x)
d/dx (sin(2x))
2cos(2x)
d/dx (cos(2x))
-2sin(2x)
d/dx (sin2(x))
2sin(x­)cos(x)
d/dx (cos2(x))
-2cos(­x)s­in(x)
d/dx (arcta­n(3x))
3/(1+9x2)
d/dx (sin(s­in(x)))
cos(x)­cos­(si­n(x))
d/dx (sin(a­rcc­os(x)))
-x/√(1-x2)
d/dx (sin(k))
0

Expone­ntial Derivative Examples

d/dx (xex)
ex+xex
d/dx (e2x)
2e2x
d/dx (e)
2xe
d/dx (e)
exe
d/dx (xx)
xx(ln(x)+1)
d/dx (2)
2*3x*ln(2)­*ln(3)
d/dx (ek)
0

Logari­thmic Derivative Examples

d/dx (ln(1/x))
-1/x
d/dx (ln(1+x))
1/(1+x)
d/dx (ln(1-x))
-1/(1-x)
d/dx (ln(x2))
2/x
d/dx (ln(x3))
3/x
d/dx (ln(x4))
4/x
d/dx (xln(x))
ln(x)+1
d/dx (ln(ln­(x)))
1/(xln(x))
d/dx (ln(k))
0
                                       
 

Comments

No comments yet. Add yours below!

Add a Comment

Your Comment

Please enter your name.

    Please enter your email address

      Please enter your Comment.

          Related Cheat Sheets

          Sass Functions Cheat Sheet
          Sequences and Series Cheat Sheet

          More Cheat Sheets by CROSSANT

          Calculus II Cheat Sheet
          Conic Sections Cheat Sheet
          Integral Trigonometry Cheat Sheet