Show Menu
Cheatography

Programming with Python Cheat Sheet (DRAFT) by

Programming with Python

This is a draft cheat sheet. It is a work in progress and is not finished yet.

Python Operators

Operator
Example
Result
Assignment =
a,b,c = 5,6,2
inc=dec=10
Expone­ntial **
a ** c
25
Unary operators~ + -
print(-8)
print(~7)
Negative number-8
-8;Negate opeartor changes all 1 to 0;0 to 1
Float Division /
a/b
0.8333­333­333­333334
Floor Division //
a//b, b//1
0, 1
Remain­der­(Mo­dulo) %
a%b, b%a
5, 1
Bitwise operators & | >> << ^
a = 10 = 1010 (Binary)
b = 4 = 0100 (Binary)
a&b = 0
a|b=14(1110)
a^b=14
a>>1=5
5<<1 = 10
Increment +=
inc += 1
11
Decrement -=
dec -= 1
9
Identity
a=10
b=5+2
c=a
a is b : False
a is c: True
Membership
in, not in
Logical and, or
True or False
True
Boolean True, False
True and False
False

Input and Output

 
Example
Result
int(in­put()) gets input and converts to integer
score = int(in­put­("Enter number: "))
10
20
input() gets input in string
name = input()
Test
ast.li­ter­al_­eva­l(i­nput()) gets input in Python data type format
list1 = ast.li­ter­al_­eva­l(i­nput())
[1,2,3,4]
('a','­e','i')
{'a':1­,'b':2}
print format
print(­"{0} {1} using {2}".fo­rma­t("d­ata­"­,"an­aly­sis­"­,"Py­tho­n"))
data analysis using Python

Condit­ional Statements

Construct
Example
Result
if...e­lif...else

if score==100:
   print("Perfect")
elif 60<­=sc­ore­<100:
 ­  print(­"­First Class")
else:
   print(­"­Fai­led­")
for
break
else
for i in range(1, 4):
   print(i)
   if i==2:
     break  ­ 
else:
    # Executed when no break in for loop
    print(­"No Break")
1
2
in
my_string = "Mary"
for alphabet in my_string:
 ­  print(­alp­habet)
my_string = "Mary had a little lamb"
for word in my_str­ing.sp­lit():
   print(­word)
M
a
r
y
Mary
had a
little
lamb
while
start =1
total= 0
while start<5:
   total+=start
   start+=1
  print(total)
10

Inbuilt Functions

Function Syntax
Descri­ption
Example
abs()
returns the absolute value of number
abs(-7.25) = 7.25
all(it­erable)
Check if all items in a list are True
all(Tr­ue,­False) is False
all{True,True) is True
any(it­erable)
Check if any of the items in a list are True
any(em­pty­_it­erable) is False
any(True,False) is True
divmod­(di­vident, divisor)
returns a tuple containing the quotient and the remainder
print(­div­mod(5, 2)) is (2,1)
eval(e­xpr­ession, globals, locals)
evaluates the smaller expression and runs it
x = 1
print(­eval('x + 1')) is 2
exec()
executes all size Python code
x = 'name = "John"\nprint(name)'
exec(x) is John
help()
Gives help content of the function
id()
returns id of the object
isinst­ance()
returns True if the specified object is of the specified type
isinst­ance(5, float, int, str, list, dict, tuple)
issubc­lass()
returns True if the specified object is a subclass
range(­start, stop, step)
start: Optional. Integer Specifying at which position to start. Default is 0
stop: Required. Integer. Runs till stop-1
step: Optional. Integer number specifying the increm­ent­ation. Negative for decrement; Default is 1;
revers­ed(­seq­uence)
returns a reversed iterator object
same as list.r­eve­rse()
round(­number, digits)
returns a floating point number
print(­rou­nd(­5.7­6543, 2)) is 5.77
sorted­(it­erable, key=fu­nction, revers­e=r­everse)
iterable:Required. The sequence to sort, list, dictio­nary, tuple etc.
key:Optional. A Function to execute to decide the order e.g lambda x:x%5 Default is None
reverseOptional. A Boolean. False will sort ascending, True will sort descen­ding. Default is False
sum(it­erable, start)
returns sum of all items in an iterable
sum(li­st,­value) = value+­lis­t_e­lements
type(o­bject, bases, dict)
returns the type of the object
zip(it­era­tor1, iterator2, iterator3 ...)
an iterator of tuples where the first item in each passed iterator is paired together, and then the second item in each passed iterator are paired together
a = ("A", "­B", "C")
b = (1, 2, 3, 4)
z = zip(a, b)
print(list(z))
OUTPUT: [('A', 1), ('B', 2), ('C', 3)]
Custom Functions default return is None
def f1(*args):
   print(args)
   return­(su­m(a­rgs))
f1(1,2)
f1(3,4,5,6)
lambda arguments : expression
expression is executed and the result is returne
x = lambda a : a + 10
print(x(5))
OUTPUT:15

List Data Structure [ ] - Mutable

Operation
Example
Result
Assignment
lst=['­ant­','­bat­','­cat­',42]
Creation
my_list = ["Hi­"] *5
['Hi', 'Hi', 'Hi', 'Hi', 'Hi']
List concat­enation
my_list = ["Hi­"] + ["Pa­dma­"]
['Hi', 'Padma']
Accessing the list
print(lst)
['ant'­,'b­at'­,'c­at',42]
Indexing
print(lst[0])
print(lst[-1])
ant
42
Slicing
print(lst[1:2])
print(lst[2:])
print(lst[ : -3])
['bat', 'cat']
['cat',42]
['ant','bat']
Remove Last Element Stack implem­ent­ation
lst.pop()
lst.pop()
42
'cat'
Remove Last Element Queue implem­ent­ation
lst.pop(0)
lst.pop(0)
'ant'
'bat'
Remove any element
lst.remove(42)
print(lst)
['ant'­,'b­at'­,'cat']
Add new element at the end
lst.append('R')
print(lst)
['ant'­,'b­at'­,'c­at'­,'R']
Add new element at index
lst.in­sert(3, 'o')
['ant'­,'b­at'­,'c­at'­,'o­','R']
Add all items of a list
lst2 = ['dog','fish']
lst.extend(lst2)
lst.append(lst2)
['ant','bat','cat','o','R','dog','fish']
['ant','bat','cat','o','R',['dog','fish']]
Length
len(lst)
5
Sort Elements
print(­sor­ted­(lst))
['R', 'ant', 'bat', 'cat', 'o']
Maximum
n=[2,6,9,3,2,1]
print(max(n))
print(max(lst, key=len))

9
ant
Minimum
print(min(nums))
print(min(lst, key=len))
1
'o'
Nested lists
nest = [[1, 2, 3, 4], [ 5, 6, 7], [8, 9, 10]]
print(nest[1])
print(nest[0][2])
[5, 6, 7]
3
List copies
print(id(lst))
l1=lst
print(id(l1))
l2= DA.copy()
print(id(l2))
122412­5667976

1224125667976

1224126395656
Integer List to string
print(­''.j­oi­n(s­tr(e) for e in n))
269321
String list to String
print(­'&­'.j­oin­(lst))
ant&b­at&ca­t&­o&R

Tuple Data Structure ( ) - Immutable

Oper­ation
Exam­ple
Result
Single value tuple crea­tion
tpl = (27,)
(27,)
Repetition
tpl2 = 2*(27,)
(27,27)
Assi­g­nm­ent
tpl2 = tpl
print(id(tpl))
print(id(tpl2))

15192281282161519228128216 151922­8128216 151922­8128216
Concat­enation
t1 = (1, 2, 3)
t2=(4, 5, 6)
t3=t1+t2


(1, 2, 3, 4, 5, 6)
Convert to Tuple
tup3 = tuple([1,2,3])
print(tup3)
tup4 = tuple('Hello')
print(tup4)


(1, 2, 3)

('H', 'e', 'l', 'l', 'o')
Inde­xing
print(­tup­3[1])
print(­tup­3[-1])
2
3
Slicing
print(­­tu­p­4­[:3])
('H', 'e', 'l')
Count Elements
print(­tup­4.c­oun­t("l­"))
2
Get Index of Element
print(­tup­3.i­nde­x(2))
1
Membership test
3 in (1, 2, 3)
True
Iteration
for x in (1, 2, 3):
   print(­x,e­nd='')
123
Length
print(­len­(t3))
6

Dictionary Data Structure { } - Mutable

Operation
Example
Result
Create Empty Dictionary
d1 = {}
{}
Creation
d={'a':1, 'b':2}
{'a': 1, 'b': 2}
Creation using dict
d=dict­(a=1, b=2)
{'a': 1, 'b': 2}
Create from tuples and lists
dict([­(1,­'ap­ple'), (2,'ba­ll')])
{1: 'apple', 2:'ball'}
Mixed keys
d3 = {'name': 'Padma', 1: [2, 4, 3]}
Create using fromkeys()
keys = {'a', 'e', 'i', 'o', 'u' }
vowels = dict.fromkeys(keys)
print(­vowels)
{'o': None, 'u': None, 'i': None, 'e': None, 'a': None}
Add multiple key,values
d = {'a':1,'c':3}
d2 = {'d': 4,'e':5}
d.update(d2)
print(d)


{'c': 3, 'e': 5, 'd': 4, 'a': 1}
Add/Change new key,value
d['c'] = 3
#overwrites value if key exists
{'a': 1, 'b': 2, 'c':3}
Using key as index
print(­d['a'])
1
get(ke­y,d­efa­ult­_value)
print(­d.g­et(­'c'­,'NA'))
NA
Get all keys lazy fn
print(list(d.key­s()))
['a','­b','c']
Get all values lazy fn
print(list(d.val­ues()))
[1,2,3]
Delete key,value
del d['b']
{'a': 1, 'c':3}
Remove key,value
print(­d.p­op(­'c'))
3
Remove any key,value
print(­d.p­opi­tem())
('a',1)
Delete key,value
del d['a']
Delete dictionary
del d
Key Membership Test
print('c' in d)
print(3 in d)
True
False
Iteration
d.keys()
d.values()
d.items()
for i in d:
   print(­d[i])
Default is keys iterated.
Use d.keys() or d.values()
Use d.items() to get (key,v­alue)
Sort keys
print(­sor­ted(d))
['a','­b','c']
Get number of keys
print(­len(d))
3
Delete all key,values
d.clear()

Sets - Mutable DS of immutable elements

Operation
Example
Result
Create Empty Set
set()
set()
Create Non-empty Set

set2 = set(['c','d','e'])
set3 = set(['­c',­'f'])

{'c','d','e'}
{'c','f'})
List to set
lst=['a','a','b','c']
set1 = set(lst)

{'a','b','c'}
Union
print(set1.union(set2))
print(set1 | set2)
{'a', 'e', 'd', 'c', 'b'}
{'a', 'e', 'd', 'c', 'b'}
Inters­ection
print(set1.intersection(set2))
print(set1 & set2)
{'c'}
{'c'}
Difference
print(set1.difference(set2))
print(set1-set2)
{'a', 'b'}
{'a', 'b'}
Symmetric difference
print(set1.symmetric_difference(set2))
print(set1^set2)
{'e', 'b', 'a', 'd'}
{'e', 'b', 'a', 'd'}
Inters­ection function does not take in list or tuples of sets but sets itself.
print(­set.in­ter­sec­tio­n(set1, set2, set3))
print(set1.intersection(set2, set3))
{'c'}
{'c'}
Remove dupliates from a list
print(­lis­t(s­et(­lst)))

Compre­hension

Why compre­hen­sions?
Compre­hen­sions are used to create iterable objects in a simpler and concise fashion.
They are the complete substitute of for loops, map, reduce or nested loop
Comprehensions are very compact and can be initia­lized in a single statement and occupies less space in the memory and it has less execution time
Types of compre­hen­sions:
1. List comprehension
2. Nested list comprehension
3. Dictionary compre­hension
4. Set comprehension
5. Generator comprehension
1. LISTS COMPRE­HEN­SION:
Syntax:
output­_list = [outpu­t_exp for var in input_list if (var satisfies this condition)]

Example:
list_u­sin­g_comp = [var x 2 for var in range(1, 10)]

Each time var is picked from iterable i.e. range here and the operation var x 2 is performed and the final value is added to the list.

OUTPUT:
[2, 4, 6, 8, 10, 12, 14, 16, 18]
2. Nested List compre­hension
Syntax:
[inner­_li­st_­element for outer_­lis­t_e­lement in outer_list for inner_­lis­t_e­lement in outer_­lis­t_e­lement ]

Example:
[ z for x in y for z in x.split()]

Without nested list compre­hen­sion:
for x in y:
   for z in x.split():
     a.append(z)
3. Dictionary Compre­hen­sions:
SYNTAX:
output­_dict = {key:value for (key, value) in iterable if (key, value satisfy this condition)}

Example:
dict_u­sin­g_comp = {var:var xx 3 for var in input_list if var % 2 != 0}
Similar to above, var is picked from input_list and is set as key. The value is assigned by the result of var xx 3

OUTPUT:
{1: 1, 3: 27, 5: 125, 7: 343}
4. Set Compre­hen­sions:
This is similar to dict compre­hension as it will have {}
But differs in the fact, retaining set principle, does not add duplicates.

EXAMPLE:
input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]
set_us­ing­_comp = {var for var in input_list if var % 2 == 0}
OUTPUT:
{2, 4, 6}
5. Generator Compre­hen­sions:
One difference between this and list compre­hension is that generator compre­hen­sions use ().
Generators don’t allocate memory for the whole list.
Instead, they generate each value one by one which is why they are memory efficient.
List compre­hen­sions impact perfor­mance for huge data.
EXAMPLE:
input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]
output_gen = (var for var in input_list if var % 2 == 0)
print(output_gen)
OUTPUT:
2 4 4 6

Maps, Filters and Reduce

1. What is a map?
Map applies a function to all the items in an input_list
Syntax
map(fu­nct­ion­_to­_apply, iterable)
Why do we need maps?
Most of the times we want to pass all the list elements to a function one-by-one and then collect the output.
items = [1, 2, 3, 4, 5] squared = [] for i in items: square­d.a­ppe­nd(­ixx2)
Map implem­ent­ation:
squared = list(m­ap(­lambda n: nxx2, items))
Advant­ages:
Instead of a list of inputs we can even have a list of functions
Return Type
lazy function; list() or tuple() to be used to list or tuple of items.
2. What is a filter?
To filter some elements what we want and remove what we dont want
Syntax
filter­(fu­nction or None, sequence)
Why do we need filters?
filter resembles a for loop but it is a builtin function and faster
Filter implem­ent­ation:
less_t­han­_zero = list(f­ilt­er(­lambda x: x < 0, number­_list))
Return Type
lazy function; list() or tuple() to be used to list or tuple of items.
3. What is a reduce function?
Reduce is a really useful function for performing some comput­ation on a list and returning the result.
Why do we need reduce?
If you want to compute the product of a list of integers. So the normal way you might go about doing this task in python is using a basic for loop
reduce implem­ent­ation:
functo­ols.re­duc­e((­lambda x, y: x * y), [1, 2, 3, 4])
Return Type
Returns final element.

String Data Structure - Mutable

Operation
Example
Result
String notation
w1='Hello'
w2=" world "
w3 = "­"­"Good mornin­g"""
single ('), double (") and triple (''' or "­"­") Same type of quotes in start and end
Multi-Line Statements
str1 = w1+ \
          ­  w2 + \
    ­ ­ ­ ­ ­ ­ ­  w3
Hello world Good morning
Comments notation
# Comment
Hash sign (#) that is not inside a string literal
Multi line comments
'''
Comments
'''
Triple­-quoted string
Indexing [ ]
print(­str­1[1])
print(str1[-5])
e
r
Slicing[ : ]
print(str1[1:5])
print(str1[:5])
print(­str­1[1:])
ello
Hello
ello world Good morning
Update String
str1 ="Ma­ths­"
Reassign is allowed
Concat­enation
print(w1 + w2)
Hello world
Repetition
print(­w1*2)
HelloHello
Membership in, not in
H in w1
e not in "­Hel­lo"
True
False
Raw String r/R
print(­'Hi­\nH­ello')

print(r'Hi\nHello')
Hi
Hello
Hi\nHello
String format opearator%
print(­"­Scores %s - %d" %(str1,90))
print("List: %s" % [1,2,3])
print('%6.2f' % (3.141­592­653­589­793,))
Scores Maths - 90

List: [1, 2, 3]

       3.14
ASCII to Unicode
print(­ord­("A"))
65
Unicode to ASCII
print(­chr­(65))
A
*Change cases
print(w1.lower())
print(w2.upper())
print(str1.title())
hello
WORLD
Hello World Good Morning

Miscel­laneous