EXTRA
Twee plots naast elkaar |
|
Plots naast elkaar uitschakelen |
|
Z-toets
Standaardnormale verdeling |
dnorm(x (evt, mean=, sd=))
|
Standaardnormale verdeling plot |
|
Kans berekenen |
|
Voorspellingsinterval 95% berekenen |
qnorm(c(0.025, 0.975), mean, sd
|
Voorspellingsinterval 99% berekenen |
qnorm(c(0.05, 0.995), mean, sd)
|
Voorspellingsinterval 95% van steekproef berekenen |
qnorm(c(0.025, 0.975), mean, sd/sqrt(j))
|
i = variabel dat je wilt testen
j = steekproefgrootte (n)
T-test
Bij een gepaarde test, t.test(na, voor, paired = T)
|
Hypothesen
Shapiro-Wilk test |
H0: De data is normaal verdeeld. |
HA: De data is niet normaal verdeeld. |
T-test |
H0: Er is geen verschil tussen de verwachtingswaarde en het gemiddelde. |
HA: Er is wel verschil tussen de verwachtingswaarde en het gemiddelde. |
W-M-W-test |
H0: De populatie distributie van X1 en X2 is hetzelfde. |
HA: De populatie distributie van X1 en X2 zijn niet hetzelfde (verschillend). |
Chi-kwadraat homogeniteit |
H0: Er is geen onafhankelijkheid. (Geen verschil in verdeling) |
HA: Er is geen onafhankelijkheid. (Wel verschil in verdeling.) |
Chi-kwadraat goodness-of-fit |
H0: Er is geen verband tussen X1 en X2, |
HA: Er is een verband tussen X1 en X2. |
ANOVA |
H0: Er is geen verschil in de verwachtingswaarden. |
HA: Er is minimaal één van de gemiddelde die significant verschillend is van de andere gemiddelden. |
The Sign test |
H0: De distributie van X1 is hetzelfde als X2. |
HA: De distributie van X1 is niet hetzelfde als X2. |
WSR test |
H0: Er is geen verschil in Y tussen X1 en X2. |
HA: Er is wel verschil in Y tussen X1 en X2. |
Shapiro Wilk test:
P > 0.05? Data is normaal verdeeld. H0 niet verwerpen.
P < 0.05? Data niet normaal verdeeld. H0 verwerpen.
- De gevonden verschillen berusten niet alleen op toeval.
Standaard berekeningen
Gemiddelde |
|
Mediaan |
|
Variantie |
|
Standaarddeviatie |
|
Kwantiel |
|
Gemiddelde, kwartielen en mediaan |
|
Binomale testen
Binomale verdeling voor plot |
|
Kans berekenen |
pbinom(x, aantal, kans, lower.tail=TRUE)
|
Kwantielen |
qbinom(x, aantal, kans, lower.tail=TRUE)
|
x |
seq(startwaarde, stopwaarde, stapgrootte)
|
Lineaire Regressie
Scatterplot maken |
|
Lineaire regressielijn |
|
Regressielijn toevoegen in plot |
lines(regressie$fitted.values~data$x, type="l")
|
Correlatie coëfficiënt/bepalen |
|
Sterkte van correlatie berekenen |
|
Fitted waarden (verwachtte y-waarde) |
|
Residue waarden (verschil tussen fitted en waargenomen) |
|
Residue waarden in plot weergeven |
segments(x, y, x, fitted(regressie))
|
Verschil fitted waarden tussen prediction interval |
predict.lm(regressie, int = 'prediction')
|
Verschil fitted waarden tussen confidence interval |
predict.lm(regressie, int = 'confidence'
|
Plot van opgestelde model |
abline(slope, interception)
|
x <- variable met vaste waarden
y <- random
Y is somehow afhankelijk van X.
regressie <- lm(y~x)
Chi-kwadraat test
Chi-kwadraat test ( χ2 berekenen) |
chisq.test(x) |
Voorspelde waarden bij geen verband |
chisq.test(x)$expected |
Verschil tussen verwachtte en gevonden waarden weergeven |
chisq.test(x)$residuals |
Kwantielen om te plotten/grenswaarde van de grootheid χ2 |
qchisq(0.99, df) |
Chi-kwadraat om te plotten |
dchisq() |
Conclusie |
Er is wel/geen verband in verdeling tussen groepen. |
Deze toets gebruiken voor data met een categorische respons: data die je in categorieën kan verdelen.
x = een matrix
df = degrees of freedom (aantal rijen -1 ) * (aantal kolommen -1) ! totaal niet meenemen
Chi-kwadraat Goodness of Fit
Komt een gevonden verdeling van waarden van één kwalitatief kenmerk overeen met verwachte verdeling?
Goodness of fit (aanpassing)
bv: dobbelsteen, wordt elke zijde 1/6 van alle keren geworpen?
Chi-kwadraat Homogeniteit
Is er een verband tussen kwalitatieve kenmerken?
independence and homogeneity (onafhankelijkheid en homogeniteit)
bv: mannen/vrouwen en rokers/niet-rokers
Niet-parametrische testen
Wilcoxon signed rank test |
wilcox.test(data1, data2, paired=TRUE, exact = TRUE, conf.level = (confidence level 0.95/0.99), conf.int = TRUE)
|
Wilcoxon Mann-Whitney test |
wilcox.test(data1, data2, alternative = 'greater/less, exact = FALSE, conf.int = TRUE, conf.level = 0.95/0.99)
|
Verschil toetsen bij niet-normaal verdeelde data.
Bij onafhankelijke data: WMW.
Bij afhankelijke data: sign test of WSR.
Alternative alleen gebruiken bij eenzijdige toetsen.
ANOVA
1) Kijken of elke groep data normaal verdeeld is |
|
2) 1 kolom met waarden, 1 kolom met indicator |
|
3.1) One-way ANOVA |
anova(lm(waardes~indicator))
|
3.2a) Two-way ANOVA per factor |
anova(lm(waardes~indicator1 + indicator2))
|
3.2b) Two-way ANOVA interactie testen |
anova(lm(waardes~indicator1 : indicator2))
|
3.2c) Two-way ANOVA factor + interactie |
anova(lm(waardes~indicator1 * indicator2))
|
Boxplot maken van two way ANOVA |
boxplot(waardes ~ indicator1 + indicator2)
|
Interactie plot |
interaction.plot(indicator1, indicator2, y)
|
* Unstacken om de shapiro test te doen |
unstack(data, form = waardes ~ indicator)
|
* Shapiro test voor alle groepen tegelijkertijd |
lapply(unstackdata,shapiro.test)
|
Post-hoc
Bonferroni correctie |
paired.t.test(values, indicator, p.adjust.method="bonferroni")
|
Tukey HSD |
TukeyHSD(aov(lm(values~idicator)))
|
Gebruik dit na de ANOVA om te kijken welke categorieën precies afwijken.
values = y
indicators = x
|