This is a draft cheat sheet. It is a work in progress and is not finished yet.
                    
        
                
        
            
                                
            
                
                                                
                                
    
    
            Show installed versions
        
                        
                                                                                    
                                                                                            pd.__versions__  | 
                                                                                                                        Python version  | 
                                                                                 
                                                                                            
                                                                                            pd.show_versions()  | 
                                                                                                                        Dependency & versions  | 
                                                                                 
                                                                         
                             
    
    
            Create an example DataFrame
        
                        
                                                                                    
                                                                                            df = pd.DataFrame({'col one':[100, 200], 'col two':[300, 400]})  | 
                                                                                                                        Dictionary method  | 
                                                                                 
                                                                                            
                                                                                            pd.DataFrame(np.random.rand(4, 8), columns=list('abcdefgh'))  | 
                                                                                                                        Rand method  | 
                                                                                 
                                                                         
                             
    
    
            Rename columns
        
                        
                                                                                    
                                                                                            df = df.rename({'col one':'col_one', 'col two':'col_two'}, axis='columns')  | 
                                                                                                                        Overwrite old names (keys) with new names (values)  | 
                                                                                 
                                                                                            
                                                                                            df.columns = ['col_one', 'col_two']  | 
                                                                                                                        Rename all of the columns at once  | 
                                                                                 
                                                                                            
                                                                                            df.add_prefix('X_')  | 
                                                                                                                        Add a prefix  | 
                                                                                 
                                                                                            
                                                                                            df.add_suffix('_Y')  | 
                                                                                                                        Add a suffix  | 
                                                                                 
                                                                         
                             
    
    
            Reverse row order
        
                        
                                                                                    
                                                                                            drinks.loc[::-1].head()  | 
                                                                                                                        Reverse only  | 
                                                                                 
                                                                                            
                                                                                            drinks.loc[::-1].reset_index(drop=True).head()  | 
                                                                                                                        Reverse and reset index  | 
                                                                                 
                                                                         
                             
    
    
            Reverse column order
        
                        
                                                                                    
                                                                                            drinks.loc[:, ::-1].head()  | 
                                                                                                                        Reverse the left-to-right order of your columns  | 
                                                                                 
                                                                         
                             
    
    
            Select columns by data type
        
                        
                                                                                    
                                                                                            drinks.select_dtypes(include='number')  | 
                                                                                                                        To select only the numeric columns  | 
                                                                                 
                                                                                            
                                                                                            drinks.select_dtypes(include=['number', 'object', 'category', 'datetime'])  | 
                                                                                                                        Include multiple data types by passing a list  | 
                                                                                 
                                                                                            
                                                                                            drinks.select_dtypes(exclude='number')  | 
                                                                                                                        Exclude certain data types  | 
                                                                                 
                                                                         
                             
                             | 
                                                                              | 
                                                        
                                
    
    
            Convert strings to numbers
        
                        
                                                                                    
                                                                                            df.astype({'col_one':'float', 'col_two':'float'}).dtypes  | 
                                                                                                                        To do mathematical operations on these columns, we need to convert the data types to numeric.  This will fail if there are ‘-‘ or NAN  | 
                                                                                 
                                                                                            
                                                                                            pd.to_numeric(df.col_three, errors='coerce').fillna(0)  | 
                                                                                                                        If you know that the NaN values actually represent zeros, you can fill them with zeros using the fillna() method  | 
                                                                                 
                                                                                            
                                                                                            df = df.apply(pd.to_numeric, errors='coerce').fillna(0) df  | 
                                                                                                                        you can apply this function to the entire DataFrame all at once by using the apply() method  | 
                                                                                 
                                                                         
                             
                             |