Cheatography
                https://cheatography.com
            
        
        
    
                   
                            
    
                    Pandas Cheat Sheet
Extra text to meet the character requirements
                    
                 
                    
        
        
            
    
        
                            
        
                
        
            
                                
            
                
                                                | Import Data
                        
                                                                                    
                                                                                            | df = pd.read_csv('filename.csv') | Read CSV into a Pandas DataFrame |  
                                                                                            | df = pd.to_csv('filename.csv') | Export Pandas DataFrame to CSV |  Import Options:
 header=False, Index=False, usecols=(5,6)
 
 Can also read CSV / HTML / Excel / JSON
 Combine multiple files into one (1) DataFrame
                        
                                                                                    
                                                                                            | all_files = glob.glob(*/.txt') | Finds all txt files in the |  
                                                                                            | df_raw = [pd.read_csv(f) for f in all_files] | Makes multiple DataFrames |  
                                                                                            | df_all = pd.concat(df_raw, ignore_index=True | Concatenates all the DataFrames into one (1) large DataFrame |  Select Data
                        
                                                                                    
                                                                                            | df.head(5) | Reads the first 5 rows |  
                                                                                            | df.tail(5) | Reads the last 5 rows |  
                                                                                            | df.shape() | Gives the number of columns and rows in the DataFrame |  Select Row
                        
                                                                                    
                                                                                            | data.iloc[0] | First row of DataFrame |  
                                                                                            | data.iloc[1] | Second row of DataFrame |  Select Column
                        
                                                                                    
                                                                                            | data.iloc[:0] | First column of DataFrame |  
                                                                                            | data.iloc[:1] | Second column of DataFrame |  Select Column and Row Combined
                        
                                                                                    
                                                                                            | df.iloc[:3, :2] | Selecting first 3 rows and first 2 columns |  
                                                                                            | df.iloc[:3, ['Column1', 'Column2']] | Selecting first 3 rows and first 2 columns |  Re-Order Colums
                        
                                                                                    
                                                                                            | df = df[['Column3', 'Column2', 'Column1']] | Re-orders the columns to the order specified in this list |  |  | Drop Columns
                        
                                                                                    
                                                                                            | df= df.drop(columns=['Column1'], axis=1) | Drops 'Column1_Name' from DataFrame |  Sort Columns
                        
                                                                                    
                                                                                            | df = df.sort_values(by=['Column1'], ascending=False) | Sort values by Column1 |  Filter Column
                        
                                                                                    
                                                                                            | df= df[(df['Column1'] >= some_number] | Filter DataFrame by certain value |  Rename Columns
                        
                                                                                    
                                                                                            | df.columns = ['A', 'B'] | Renamed Columns to 'A' and 'B' |  Merge DataFrames
                        
                                                                                    
                                                                                            | df1.append(df2) | Joins df1 and df2 |  Filter on Condition
                        
                                                                                    
                                                                                            | df = df[(df> 2).all(axis=1)] | Removes any values less than 2 |  Select Row Based on Condition
                        
                                                                                    
                                                                                            | row = df[df.A > 3].iloc[0] | Select first row where A > 0 |  Dealing with NAN values
                        
                                                                                    
                                                                                            | df= df.fillna(method='ffill') | Fills blank values using forward fill method |  
                                                                                            | df= df.fillna(method='bfill') | Fills blank values using backwards fill method |  
                                                                                            | df.dropna(inplace=True) | Removes rows with no values |  Padding Values With Zero's
                        
                                                                                    
                                                                                            | df['Column1'] = df['Column1'].astype(str).str.zfill(6) | Sets the numbe to six (6) long, which adds zeros |  Change Column Data Type
                        
                                                                                    
                                                                                            | df['Column1']= df['Column1'].astype(float) | Change 'Column1' to float |  Convert Column to Date / Time
                        
                                                                                    
                                                                                            | df['Time'] = df['Time'].apply(pd.to_datetime) | Converts the time column to a Datetime Series |  | 
            
                            
            
            
        
        
        
        
        
            
    
        
          
Created By
Metadata
Favourited By
Comments
No comments yet. Add yours below!
Add a Comment
Related Cheat Sheets