Loading the data
>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0
|
Training and Test data
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
Prediction
Supervised Estimators >>> y_pred = svc.predict(np.random.random((2,5))) >>> y_pred = lr.predict(X_test) >>> y_pred = knn.predict_proba(X_test)
|
Unsupervised Estimators >>> y_pred = k_means.predict(X_test)
|
Pre-processing the data
Standardization >>> from sklearn.preprocessing import StandardScaler >>> scaler = StandardScaler().fit(X_train) >>> standardized_X = scaler.transform(X_train) >>> standardized_X_test = scaler.transform(X_test)
|
Normalization >>> from sklearn.preprocessing import Normalizer >>> scaler = Normalizer().fit(X_train) >>> normalized_X = scaler.transform(X_train) >>> normalized_X_test = scaler.transform(X_test)
|
Encoding Categorical Features >>> from sklearn.preprocessing import LabelEncoder >>> enc = LabelEncoder() >>> y = enc.fit_transform(y)
|
Imputting Missing Values >>> from sklearn.preprocessing import Imputer >>> imp = Imputer(missing_values=0, strategy='mean', axis=0) >>> imp.fit_transform(X_train)
|
Model Fitting
Supervised Learning >>> lr.fit(X, y) >>> knn.fit(X_train, y_train) >>> svc.fit(X_train, y_train)
|
Unsupervised Learning >>> k_means.fit(X_train) >>> pca_model = pca.fit_transform(X_train)
|
|
|
Create model
Supervised Learning Estimators Linear Regression >>> from sklearn.linear_model import LinearRegression >>> lr = LinearRegression(normalize=True)
Support Vector Machines (SVM) >>> from sklearn.svm import SVC >>> svc = SVC(kernel='linear')
Naive Bayes >>> from sklearn.naive_bayes import GaussianNB >>> gnb = GaussianNB()
KNN >>> from sklearn import neighbors >>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
|
Unsupervised Learning Estimators Principal Component Analysis (PCA) >>> from sklearn.decomposition import PCA >>> pca = PCA(n_components=0.95)
K Means >>> from sklearn.cluster import KMeans >>> k_means = KMeans(n_clusters=3, random_state=0)
|
Tune Your Model
Grid Search >>> from sklearn.grid_search import GridSearchCV >>> params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]} >>> grid = GridSearchCV(estimator=knn, param_grid=params) >>> grid.fit(X_train, y_train) >>> print(grid.best_score_) >>> print(grid.best_estimator_.n_neighbors)
|
Randomized Parameter Optimization >>> from sklearn.grid_search import RandomizedSearchCV >>> params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]} >>> rsearch = RandomizedSearchCV(estimator=knn, param_distributions=params, cv=4, n_iter=8, random_state=5) >>> rsearch.fit(X_train, y_train) >>> print(rsearch.best_score_)
|
|
|
Evaluate Your Model’s Performance
Classification Metrics Accuracy Score >>> knn.score(X_test, y_test) >>> from sklearn.metrics import accuracy_score >>> accuracy_score(y_test, y_pred)
Classification Report >>> from sklearn.metrics import classification_report >>> print(classification_report(y_test, y_pred))
Confusion Matrix >>> from sklearn.metrics import confusion_matrix >>> print(confusion_matrix(y_test, y_pred))
|
Regression Metrics Mean Absolute Error >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2] >>> mean_absolute_error(y_true, y_pred)
Mean Squared Error >>> from sklearn.metrics import mean_squared_error >>> mean_squared_error(y_test, y_pred)
R² Score >>> from sklearn.metrics import r2_score >>> r2_score(y_true, y_pred)
|
Clustering Metrics Adjusted Rand Index >>> from sklearn.metrics import adjusted_rand_score >>> adjusted_rand_score(y_true, y_pred)
Homogeneity >>> from sklearn.metrics import homogeneity_score >>> homogeneity_score(y_true, y_pred)
V-measure >>> from sklearn.metrics import v_measure_score >>> metrics.v_measure_score(y_true, y_pred)
|
Cross-Validation >>> from sklearn.cross_validation import cross_val_score >>> print(cross_val_score(knn, X_train, y_train, cv=4)) >>> print(cross_val_score(lr, X, y, cv=2))
|
|