Show Menu
Cheatography

Data Visualization in R through ggvis Cheat Sheet by

This cheat sheet is made for the ggvis library in R for effective visualization of data

Instal­lation

instal­l.p­ack­age­s("g­gvi­s")
librar­y(g­gvis)
-insta­­ll.p­­ac­­kag­­es­(­"­­ggv­­is­") will install all the required packages you need for visual­­iz­ation through ggvis
-libra­­ry­(­g­gvis) will call the ggvis package to be used in your visual­­iz­ation

Layers

 

Simple Layer


mtcars %>% ggvis(~mpg, ~disp, fill = ~vs) %>% layer_points()
Here I am using the dataset mtcars and visual­ising it through layer points.

Output

Multiple Layer

mtcars %>% ggvis(~wt, ~mpg) %>%
  layer_smooths(span = 1) %>%
  layer_smooths(span = 0.3, stroke := "red")
I have taken the mtcars dataset and visualized the multiple layers using different strokes

Output

 

Group_by

train_tbl %>%
group­_by­(se­ason) %>%
ggvis­(~t­emp­_f,­~count, stroke = ~facto­r(s­eason)) %>%
layer­_sm­oot­hs()
I have taken season dataset here, and season is a catego­­rical variable. And we have grouped it and then used stroke to highlight the different seasons.

Output

Popular In-Built plot types

1. layer_­poi­nts()

2. layer_­lines()

3. layer_­bars()

4. layer_­smo­oths()

5. layer_­his­tog­rams()

Global Vs Local properties

A property that is set inside ggvis() is applied globally. While a property set inside layer­­_<m­­ar­k­s­>() is applied locally.
Local properties can override global properties when applic­­able.

Graphics

The graphics produced by ggvis are fundam­entally web graphics and work very differ­ently from tradit­ional R graphics. This allows us to implement exciting new features like intera­ctivity
The goal of ggvis is to make it easy to build intera­ctive graphics for explor­atory data analysis. ggvis has a similar underlying theory to ggplot2 (the grammar of graphics).
 

Scale Types

Any visual property in the visual­ization can be adjusted with scale().
ggvis provides several different functions for creating scales:
scale_­dat­eti­me(), scale­_lo­gic­al(), scale_­nom­inal(), scale_­num­eric(), scale_­sin­gul­ar()

Code
faithful %>%
ggivs­(~e­rup­tio­ns,­~wa­iting, fill = ~erupt­ions) %>%
layer­_po­ints() %>%
scale­_nu­mer­ic(­"­fil­l", range = c("r­ed",­"­ora­nge­"))

Output

ggvis & intera­­ction ()

train_tbl %>%
group­_by­(se­aso­n,h­oliday) %>%
ggvis­(~c­ount, fill = ~inter­act­ion­(se­aso­n,h­oli­day)) %>%
layer­_de­nsi­ties()
We can also group data based on intera­­ction of two or more variables. group­­_by() creates unique groups for each distinct combin­­ation of values within the grouping variables.

ungro­up() can remove the grouping inform­­ation.
inter­­act­­ion() can map the properties to unique combin­­ations of the variables

Output

 

Model Prediction

faithful %>%
ggvis(­~er­upt­ion­s,~­wai­ting) %>%
layer_­poi­nts­(fill := "­gre­en", fillOp­acity := 0.5) %>%
layer_­mod­el_­pre­dic­tio­ns(­model = "­lm", stroke := "­red­") %>%
layer_­smo­oth­s(s­troke := "­sky­blu­e")
layer_­­mo­d­e­l_­­pre­­di­c­t­ions() plots the prediction line of a model fitted to the data.
layer­­_mo­­de­l­_­pr­­edi­­ct­i­o­ns­­(model = "­­lm­")

Output

Intera­­ctive Plots

 
ggivs comes several widgets such as

input_­­ch­e­c­kb­­ox(),
input­­_ch­­ec­k­b­ox­­gro­­up(),
input­­_nu­­me­r­ic(),
input­­_ra­­di­o­b­ut­­ton­­s(),
input_­­se­l­e­ct(),
input­­_sl­­id­er(), and input_­­te­x­t().

label = "ABCD " , choices = c("r­­ed­"­,­"­­bla­­ck­") -
value = "­­bl­a­c­k" - Used with input_­­text()
map = as.name used when we want to return variable names

Are the common arguments inside these functions.

Output

           

Help Us Go Positive!

We offset our carbon usage with Ecologi. Click the link below to help us!

We offset our carbon footprint via Ecologi
 

Comments

No comments yet. Add yours below!

Add a Comment

Your Comment

Please enter your name.

    Please enter your email address

      Please enter your Comment.

          Related Cheat Sheets

          ggvis_18BCE2193 Cheat Sheet