This is a draft cheat sheet. It is a work in progress and is not finished yet.
                    
        
                
        
            
                                
            
                
                                                
                                
    
    
            Read and Write
        
                        
                                                                                    
                                                                                             | 
                                                                                 
                                                                                            
                                                                                            pd.read_csv(filepath_or_buffer, sep=', ', names=None, index_col=None)
  | 
                                                                                 
                                                                                            
                                                                                            df.to_csv(path_or_buf, sep, columns=None, header=True, index=True, index_label=None, mode='w')
  | 
                                                                                 
                                                                         
                             
    
    
            Numerical Features and Nans
        
                        
                                                                                    
                                                                                            df.sort_values( by=feat,  ascending=False)
  | 
                                                                                                                        sort table according to the values of a columns  | 
                                                                                 
                                                                                            
                                                                                             | 
                                                                                                                        remove lines with a NaN value  | 
                                                                                 
                                                                                            
                                                                                             | 
                                                                                                                        check if the value of feat is NaN in the table  | 
                                                                                 
                                                                         
                             
    
    
            Categorical Features
        
                        
                                                                                    
                                                                                            pd.get_dummies(df[feature])  | 
                                                                                                                        Transform a categorical feature into dummy variables  | 
                                                                                 
                                                                         
                             
    
    
            Features Visualization
        
                        
                                                                                    
                                                                                            df[feats].plot(kind=['density' | 'bar'], subplots=True, layout=(1, 2), sharex=, figsize=);
  | 
                                                                                                                        distibution of numeric features  | 
                                                                                 
                                                                         
                             
                             | 
                                                                              | 
                                                        
                                
    
    
            General Infos and Basic Statistics
        
                        
                                                                                    
                                                                                             | 
                                                                                                                        general infos  | 
                                                                                 
                                                                                            
                                                                                             | 
                                                                                                                        basic statistics   on numerical features  | 
                                                                                 
                                                                                            
                                                                                            df.describe(include=[ 'object', 'bool'])
  | 
                                                                                                                        include non-numerical features  | 
                                                                                 
                                                                         
                             
    
    
            Apply Functions
        
                        
                                                                                    
                                                                                            df.apply(my_function) # ex: df.apply(lambda x: )
  | 
                                                                                                                        apply a function  | 
                                                                                 
                                                                                            
                                                                                            df['feat'] = df['feat'].map(d) # or df = df.replace({'feat': d})
  | 
                                                                                                                        replace values in a column according to dict d  | 
                                                                                 
                                                                         
                             
    
    
            Group by
        
                        
                                                                                    
                                                                                            df.groupby(['feat']) [columns_to_keep].func()
  | 
                                                                                                                        group by a feature  | 
                                                                                 
                                                                                            
                                                                                            df.groupby([feat]) [columns_to_keep]. agg([list_of_functions])
  | 
                                                                                                                        group by a feature and apply several functions  | 
                                                                                 
                                                                         
                             
    
    
            Cross Tables
        
                        
                                                                                    
                                                                                            pd.crosstab(df['feat1'],  df['feat2'], normalize=)
  | 
                                                                                                                        confusion matrix  | 
                                                                                 
                                                                                            
                                                                                            df.pivot_table( ['features_to_analyze'], ['grouping_feat'], aggfunc='mean')
  | 
                                                                                                                        pivot table  | 
                                                                                 
                                                                         
                             
                             |