Cheatography
                https://cheatography.com
            
        
        
    
                   
                            
                    
        
        
            
    
        
                            
        
                
        
            
                                
            
                
                                                | Taylor Series
                        
                                                                                    
                                                                                            | 1/1-x | 1+x+x2+x3+... | ∑ xn |  
                                                                                            | sin(x) | x1-x3/3!+x5/5!-+... | ∑ (-1)nx2n+1/(2n+1)! |  
                                                                                            | ex | 1+x+x2/2!+x3/3!+... | ∑ xn/n! |  
                                                                                            | cos(x) | 1-x2/2!+x4/4!-+... | ∑ (-1)nx2n/(2n)! |  centered around 0(1/1-x only valid for -1<x<1.)
 Trig Sub's
                        
                                                                                    
                                                                                            | √(x2+a2) | x=atan(θ) |  
                                                                                            | √(a2-x2) | x-asin(θ) |  
                                                                                            | √(x2-a2) | x=asec(θ) |  
                                                                                            | b-ax2 | x= √b / √a  sin(θ) |  
                                                                                            | ax2+b | x= √b / √a tan(θ) |  
                                                                                            | ax2-b | x= √b / √a sec(θ) |  Convergence|Divergence test
                        
                                                                                    
                                                                                            | Nth term test for divergence | lim(n>∞) an | ≠0 ∑an diverges |  
                                                                                            | P-Test | converge p>1 | diverge p≤1 |  
                                                                                            | Limit Comparison | L= lim(n>∞) (an/bn) | L≠0 series both diverge|converge |  
                                                                                            | Ratio test | r= lim(n>∞) |an+1/an| | r<1 converge r>1 diverge |  
                                                                                            | Alternating series test | lim(n>∞) an | =0 ∑ (-1)nan converges |  |  | Common Integrals
                        
                                                                                    
                                                                                            | ∫sin(x)dx | -cos(x)+C |  
                                                                                            | ∫cos(x)dx | sin(x)+C |  
                                                                                            | ∫tan(x)dx | -ln(cos(x))+C |  
                                                                                            | ∫sec(x)dx | ln(sec(x)+tan(x))+C |  
                                                                                            | ∫csc(x)dx | -ln(csc(x)+cot(x))+C |  
                                                                                            | ∫cot(x)dx | ln(sin(x))+C |  
                                                                                            | ∫sec2(x)dx | tan(x)+C |  
                                                                                            | ∫ef(x)dx | ef(x)/f'(x)+C |  
                                                                                            | ∫(1/x)dx | ln(x)+C |  
                                                                                            | ∫(1/xn)dx | (xn+1/n+1)+C |  
                                                                                            | ∫dx/√(a-x2) | arcsin(x/√(a))+C |  
                                                                                            | ∫dx/x2+a | (1/√a)arctan(x/√a)+C |  Important Derivatives
                        
                                                                                    
                                                                                            | d/dx arctan f(x) | f'(x)/x2+1 |  
                                                                                            | d/dx sec(θ) | sec(θ)tan(θ) |  Power Series
                        
                                                                                    
                                                                                            | general form | ∑ an(x-a)n |  
                                                                                            | an = sequence of coeff. |  
                                                                                            | center | x=a |  
                                                                                            | radius of convergence | R=lim(n>∞) |an/an+1| |  
                                                                                            | endpoints | x=a+R and x=a-R in series |  Parametric Curves
                        
                                                                                    
                                                                                            | Horizontal Tangents (x) | when dy/dx=0 t=? |  |  | Equations for Parabola
                        
                                                                                    
                                                                                            | y=a(x-h)2+k |  
                                                                                            | Directrix | y=k-(1/4a) |  
                                                                                            | Focus | (h,k+1/4a) |  
                                                                                            | x=a(y-k)2+h |  
                                                                                            | Directrix | x=h-(1/4a) |  
                                                                                            | Focus | (h+1/4a,k) |  Equations for Ellipses
                        
                                                                                    
                                                                                            | (x-h)2/a2 + (y-k)2/b2 =1 | c=√(|a2-b2|) |  
                                                                                            | eccentricity | c/(max a|b) |  
                                                                                            | foci (on major axis) | when x= center and y= center |  y= horizontal axisx= vertical axis
 Trig Identities
                        
                                                                                    
                                                                                            | sec2(θ) | tan2(θ)+1 |  
                                                                                            | sin2(θ) | 1-cos2(θ) |  
                                                                                            | tan2(θ) | sec2(θ)-1 |  
                                                                                            | cos2(θ) | [1+cos(2θ)]/2 |  
                                                                                            | sin2(θ) | [1-cos(2θ)]/2 |  
                                                                                            | double angle cos2(θ) | (1+cos(2θ)/2 |  
                                                                                            | double angle sin2(θ) | (1-cos(2θ)/2 |  Polar Coordinates & Area
                        
                                                                                    
                                                                                            | Area | ∫1/2 (f(x))2 dx |  
                                                                                            | One petal of r=sin(nθ) | interval [0,π/n] |  
                                                                                            | One petal of r=cos(nθ) | [-π/2n,π/2n] |  
                                                                                            | Polar > Cartesian | x=rcos(θ) y=rsin(θ) |  
                                                                                            | Cartesian > Polar | tan(θ)=y/x x2+y2=r2 |  | 
            
                            
            
            
        
        
        
        
        
            
    
        
          
Created By
Metadata
Favourited By
Comments
great
Add a Comment
Related Cheat Sheets