Cheatography

Closures

// Syntax
{ (parameters) -> return type in
statements

}

1. Closures are self-contained blocks of functionality that can be

passed around and used in your code.

Closures Syntax Optimizations

let names = ["Chris", "Alex", "Ewa", "Barry",
"Daniella"]
// 1
revers edNames = names.s or ted(by: { (sl: String,
s2: String) -> Bool in
return sl > s2
})
// 2. Inferring Type From Context
revers edNames = names.s or ted(by: { sl, s2 in

return sl > s2 })

// 3. Implicit Returns from Single -Ex pre ssion
Closures

revers edNames = names.s or ted(by: { sl, s2 in sl
> s2 })

// 4. Shorthand Argument Names

revers edNames = names.s or ted(by: { $0 > $1 })
// 5. Operator Methods, operator (>) is a method
revers edNames = names.s or ted(by: >)

// 6. Trailing Closures

{ $0 > S1 }

// function with only one arguement

revers edNames = names.s or ted()

revers edNames = names.s orted { $0 > $1 }

1. A trailing closure is written after the function call’s parentheses,
even though it is still an argument to the function.

Escaping Closures

var completionHandlers: [() -> Void] = []
func someFu nct ion Wit hEs cap ing Clo sur e(h -
-> Void) {

andler: @escaping ()

com ple tio nHa ndl ers.ap pen d(h andler)
}
func someFu nct ion Wit hNo nes cap ing Clo sur -

e(c losure: () -> Void) {

By zyqhi Not published yet.
cheatography.com/zyghi/

Page 1 of 2.

Last updated 10th April, 2019.

Swift 5 Reference Cheat Sheet
by zyqhi via cheatography.com/79780/cs/19305/

Escaping Closures (cont)

> closure()
}
class SomeClass {
varx = 10
func doSomething() {
someFunctionWithEscapingClosure {
self.x =100
}
someFunctionWithNonescapingClosure {
x =200

}

1. A closure is said to escape a function when the closure is passed

as an argument to the function, but is called after the function
returns.

2. Marking a closure with @escaping means you have to refer to self
explicitly within the closure.

Autoclosures

var customersInLine = ["Chris", "Alex", "Ewa",

"Barry", "Daniella"]
func serve(cus tomer custom erP rov ider:
@autoc losure () -> String) {

pri nt("Now serving \ (cust ome rPr ovi -
der ()) ')
}

serve (

0))

cus tomer: custom ers InL ine.re mov e (at:

1. An autoclosureis a closure that is automatically created to wrap an
expression that’s being passed as an argument to a function.
2. An autoclosure lets you delay evaluation.

Functions

—r 1T 1T 1 —
func greetingUser(withUsername username:String) -> String
{

let greeting:String = "Hi, \(username) :-)"

[E—
return greeting . o
[—

retur
function call argument

e =

var greetme:String = greetingUser(withUsername: "Bob")
—

print(greetme)

gument lat

1. Functions are self-contained chunks of code that perform a
specific task.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/zyqhi/
http://www.cheatography.com/zyqhi/cheat-sheets/swift-5-reference
https://cheatography.com/uploads/zyqhi_1554775577_B6AE8D45-D66D-4813-A1D4-5B13785AF6D5.jpg
http://www.cheatography.com/zyqhi/
http://crosswordcheats.com

Cheatography

class SomeClass {

// Type Property

static var stored Typ ePr operty = "Some
value."
static var comput edT ype Pro perty: Int {
return 27
}
class var overri dea ble Com put edT ype -
Pro perty: Int {

return 107

// Lazy Stored Property
lazy var view = UlIView()
// Stored Property

let data = [String] ()

// Computed Property

var id: Int = 0 {
willSet {
pri nt(" About to set \
(newV alu e)")
}
didSet {
pri nt("Did set id to \

(id), oldvalue is \ (0ldV alu e)")

}

var idStr: String {
set {
id = Int(idStr) 2?2 0
}
get {

return String(id)

var desc: String {

return " Rea donly proper ty."

By zyqghi Not published yet.
cheatography.com/zyqhi/

Page 2 of 2.

Last updated 10th April, 2019.

Swift 5 Reference Cheat Sheet
by zyqhi via cheatography.com/79780/cs/19305/

Property (cont)

V|
-

1. Computed properties must be declared with the varkeyword,
because their value is not fixed.

2. A lazy stored property is a property whose initial value is not
calculated until the first time it is used.

Enumeration

/// Use enum
enum Planet {

case mercury, venus, earth, mars, jupiter,
saturn,

}

var p =

uranus, neptune

Planet.venus
p = .uranus

/// Iterating over Enumer ation Cases
Caselt erable {

enum Beverage:

case coffee, tea, juice

}

let number OfC hoices = Bevera ge.a 11 Cas es.c -
ount

"

print(\(n umb erO fCh oices) beverages availa -
ble ")
for beverage in Bevera ge.a 11 Cases {

pri nt(" bev ergae is \ (beve rag e)")
}
/// Associated Values
enum Barcode {

case upc (Int, Int)

Int, Int,

case grCode (St ring)

}

1. An enumeration defines a common type for a group of related
values and enables you to work with those values in a type-safe way
within your code.

2. Conforming to the Caselterable protocol makes a enum iterable.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/zyqhi/
http://www.cheatography.com/zyqhi/cheat-sheets/swift-5-reference
http://www.cheatography.com/zyqhi/
http://crosswordcheats.com

	Swift 5 Reference Cheat Sheet - Page 1
	Closures
	Closures Syntax Optimi­zations
	Autocl­osures
	Functions
	Escaping Closures

	Swift 5 Reference Cheat Sheet - Page 2
	Property
	Enumer­ation

