
Swift 5 Reference Cheat Sheet
by zyqhi via cheatography.com/79780/cs/19305/

Closures

// Syntax

{ (para met ers) -> return type in

 st ate ments

}

1. Closures are self-c ont ained blocks of functi onality that can be
passed around and used in your code.

Closures Syntax Optimi zations

let names = ["Chris", "Alex", "Ewa", "Barry",

"Daniella"]

// 1

revers edNames = names.s or ted(by: { (s1: String, s2:
String) -> Bool in

 return s1 > s2
})

// 2. Inferring Type From Context

revers edNames = names.s or ted(by: { s1, s2 in return
s1 > s2 })

// 3. Implicit Returns from Single -Ex pre ssion
Closures

revers edNames = names.s or ted(by: { s1, s2 in s1 >
s2 })

// 4. Shorthand Argument Names

revers edNames = names.s or ted(by: { $0 > $1 })
// 5. Operator Methods, operator (>) is a method

revers edNames = names.s or ted(by: >)
// 6. Trailing Closures

revers edNames = names.s or ted() { $0 > $1 }
// function with only one arguement

revers edNames = names.s orted { $0 > $1 }

1. A trailing closure is written after the function call’s parent heses,
even though it is still an argument to the function.

Escaping Closures

var completionHandlers: [() -> Void] = []

func someFu nct ion Wit hEs cap ing Clo sur e(h andler:
@escaping () -> Void) {

 com ple tio nHa ndl ers.ap pen d(h andler)
}

func someFu nct ion Wit hNo nes cap ing Clo sur e(c losure:
() -> Void) {

Escaping Closures (cont)

 clo sure()
}

class SomeClass {

 var x = 10
 func doSome thing() {
 som eFu nct ion Wit hEs cap ing Closure {
 self.x = 100
 }
 som eFu nct ion Wit hNo nes cap ing Closure {
 x = 200
 }
 }
}

1. A closure is said to escape a function when the closure is passed
as an argument to the function, but is called after the function
returns.
2. Marking a closure with @esca ping means you have to refer to self
explicitly within the closure.

Autocl osures

var customersInLine = ["Chris", "Alex", "Ewa",

"Barry", "Daniella"]

func serve(cus tomer custom erP rov ider: @autoc losure
() -> String) {

 pri nt("Now serving \(cust ome rPr ovi der ()) !")
}

serve(cus tomer: custom ers InL ine.re mov e(at: 0))

1. An autoc losure is a closure that is automa tically created to wrap
an expression that’s being passed as an argument to a function.
2. An autocl osure lets you delay evalua tion.

Functions

1. Functions are self-c ont ained chunks of code that perform a
specific task.

By zyqhi
cheatography.com/zyqhi/

Not published yet.
Last updated 10th April, 2019.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/zyqhi/
http://www.cheatography.com/zyqhi/cheat-sheets/swift-5-reference
https://www.cheatography.com/uploads/zyqhi_1554775577_B6AE8D45-D66D-4813-A1D4-5B13785AF6D5.jpg
http://www.cheatography.com/zyqhi/
https://apollopad.com

Swift 5 Reference Cheat Sheet
by zyqhi via cheatography.com/79780/cs/19305/

Property

class SomeClass {

 // Type Property
 static var stored Typ ePr operty = "Some value."
 static var comput edT ype Pro perty: Int {
 return 27
 }
 class var overri dea ble Com put edT ype Pro perty:
Int {

 return 107
 }

 // Lazy Stored Property
 lazy var view = UIView()

 // Stored Property
 let data = [String]()

 // Computed Property
 var id: Int = 0 {
 willSet {
 pri nt(" About to set \(newV alu e)")
 }
 didSet {
 pri nt("Did set id to \(id), oldValue is
\(oldV alu e)")
 }
 }

 var idStr: String {
 set {
 id = Int(idStr) ?? 0
 }
 get {
 return String(id)
 }
 }

 var desc: String {
 return " Rea donly proper ty."
 }

Property (cont)

}

1. Computed properties must be declared with the var keyword,
because their value is not fixed.
2. A lazy stored property is a property whose initial value is not
calculated until the first time it is used.

Enumer ation

/// Use enum

enum Planet {

 case mercury, venus, earth, mars, jupiter,
saturn, uranus, neptune

}

var p = Planet.venus

p = .uranus

/// Iterating over Enumer ation Cases
enum Beverage: CaseIt erable {
 case coffee, tea, juice
}

let number OfC hoices = Bevera ge.a ll Cas es.c ount
print(" \(n umb erO fCh oices) beverages availa ble ")
for beverage in Bevera ge.a ll Cases {
 pri nt(" bev ergae is \(beve rag e)")
}

/// Associated Values

enum Barcode {

 case upc(Int, Int, Int, Int)
 case qrCode (St ring)
}

1. An enumer ation defines a common type for a group of related
values and enables you to work with those values in a type-safe way
within your code.
2. Conforming to the CaseI ter able protocol makes a enum iterable.

By zyqhi
cheatography.com/zyqhi/

Not published yet.
Last updated 10th April, 2019.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/zyqhi/
http://www.cheatography.com/zyqhi/cheat-sheets/swift-5-reference
http://www.cheatography.com/zyqhi/
https://apollopad.com

	Swift 5 Reference Cheat Sheet - Page 1
	Closures
	Closures Syntax Optimizations
	Autoclosures
	Functions
	Escaping Closures

	Swift 5 Reference Cheat Sheet - Page 2
	Property
	Enumeration

