Cheatography

Closures

// Syntax
{ (parameters) -> return type in
statements

}

1. Closures are self-contained blocks of functionality that can be
passed around and used in your code.

Closures Syntax Optimizations

let names = ["Chris", "Alex", "Ewa", "Barry",
"Daniella"]

// 1

reversedNames = names.sorted(by: { (sl: String, s2:
String) -> Bool in

return sl > s2

1)

// 2. Inferring Type From Context

reversedNames = names.sorted(by: { sl, s2 in return
sl > s2 })

// 3. Implicit Returns from Single-Expression
Closures

reversedNames = names.sorted(by: { sl1, s2 in sl >
s2 })

// 4. Shorthand Argument Names

reversedNames = names.sorted(by: { $0 > $1 })

// 5. Operator Methods, operator (>) is a method
reversedNames = names.sorted (by: >)

// 6. Trailing Closures

reversedNames = names.sorted() { $0 > $1 }

// function with only one arguement

reversedNames = names.sorted { $0 > $1 }

Swift 5 Reference Cheat Sheet
by zyghi via cheatography.com/79780/cs/19305/

Escaping Closures (cont)

closure ()
}
class SomeClass {
var x = 10
func doSomething () {
someFunctionWithEscapingClosure {
self.x = 100
}
someFunctionWithNonescapingClosure {

200

RO=

}

1. A closure is said to escape a function when the closure is passed
as an argument to the function, but is called after the function
returns.

2. Marking a closure with @escaping means you have to refer to self
explicitly within the closure.

Autoclosures

var customersInLine = ["Chris", "Alex", "Ewa",
"Barry", "Daniella"]
func serve (customer customerProvider: @autoclosure

() -> String) f{
print ("Now serving \ (customerProvider())!")

}

serve (customer:

customersInLine.remove (at: 0))

1. An autoclosure is a closure that is automatically created to wrap
an expression that’s being passed as an argument to a function.
2. An autoclosure lets you delay evaluation.

1. A trailing closure is written after the function call’'s parentheses,
even though it is still an argument to the function.

Escaping Closures

var completionHandlers: [() -> Void] = []
func someFunctionWithEscapingClosure (handler:
@escaping () -> Void) {

completionHandlers.append (handler)
}

func someFunctionWithNonescapingClosure (closure:

() -> void) {

By zyqhi Not published yet.
cheatography.com/zyghi/

Page 1 of 2.

Last updated 10th April, 2019.

—r 1T 1T 1 —
func greetingUser(withUsername username:String) -> String
{

let greeting:String = "Hi, \(username) :-)"
[

return greeting

e

= [
var greetme:String = greetingUser(withUsername: "Bob")
|

print(greetme)

1. Functions are self-contained chunks of code that perform a
specific task.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/zyqhi/
http://www.cheatography.com/zyqhi/cheat-sheets/swift-5-reference
https://www.cheatography.com/uploads/zyqhi_1554775577_B6AE8D45-D66D-4813-A1D4-5B13785AF6D5.jpg
http://www.cheatography.com/zyqhi/
http://crosswordcheats.com

Cheatography

Property

class SomeClass {

// Type Property

static var storedTypeProperty = "Some value."
static var computedTypeProperty: Int {

return 27

}

class var overrideableComputedTypeProperty:
Int {

return 107
// Lazy Stored Property
lazy var view = UIView ()

// Stored Property

let data = [String] ()

// Computed Property

var id: Int = 0 {
willSet {
print ("About to set \ (newValue)")
}
didset {
print ("Did set id to \(id), oldvalue is
\ (oldvalue)")

}

var idStr: String {
set {
id = Int(idStr) ?? 0
}
get {

return String(id)

var desc: String {

return "Readonly property."

By zyqhi Not published yet.
cheatography.com/zyghi/

Page 2 of 2.

Last updated 10th April, 2019.

Swift 5 Reference Cheat Sheet
by zyghi via cheatography.com/79780/cs/19305/

Property (cont)

|

1. Computed properties must be declared with the var keyword,
because their value is not fixed.

2. A lazy stored property is a property whose initial value is not
calculated until the first time it is used.

/// Use enum

enum Planet {

case mercury, venus, earth, mars, jupiter,
saturn, uranus, neptune
}
var p = Planet.venus

p = .uranus
/// Iterating over Enumeration Cases
enum Beverage: Caselterable {

case coffee, tea, juice

}
let numberOfChoices = Beverage.allCases.count
print ("\ (numberOfChoices) beverages available")
for beverage in Beverage.allCases {
print ("bevergae is \ (beverage)")
}
/// Associated Values
enum Barcode {
case upc(Int, Int, Int, Int)
case grCode (String)

}

1. An enumeration defines a common type for a group of related
values and enables you to work with those values in a type-safe way
within your code.

2. Conforming to the Caselterable protocol makes a enum iterable.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/zyqhi/
http://www.cheatography.com/zyqhi/cheat-sheets/swift-5-reference
http://www.cheatography.com/zyqhi/
http://crosswordcheats.com

	Swift 5 Reference Cheat Sheet - Page 1
	Closures
	Closures Syntax Optimi­zations
	Autocl­osures
	Functions
	Escaping Closures

	Swift 5 Reference Cheat Sheet - Page 2
	Property
	Enumer­ation

