# Respiratory System Cheat Sheet by zpms1207 via cheatography.com/147948/cs/32198/

### Lung Anatomy

| Occupy all of the thoracic cavity except mediastinum |                                         |  |
|------------------------------------------------------|-----------------------------------------|--|
| Root                                                 | site of vascular, bronchial attachments |  |

Costal surface

anterior, lateral, posterior surfaces

### Structures of the Lungs



## Upper Respiratory Tract

| conduction, filtration, hur | nidification and warming of inhaled air |
|-----------------------------|-----------------------------------------|
|-----------------------------|-----------------------------------------|

| Nasal<br>Cavity      | Nasal conchae, nasal vestibule, nostril                                                                  |
|----------------------|----------------------------------------------------------------------------------------------------------|
| Paranasal<br>Sinuses | Maxillary, frontal, sphenoidal and ethmoidal sinuses                                                     |
| Pharynx              | Nasopharynx, oropharynx, laryngopharynx                                                                  |
| Larynx<br>(superior) | Vocal cords, epiglottis, vestibular fold, thyroid cartilage vocal fold, cricoid cartilage, thyroid gland |

### Lower Respiratory Tract

#### conduction, gas exchange

| Trachea     | cervical, thoracic                                     |
|-------------|--------------------------------------------------------|
| Bronchi     | left primary bronchus, right primary bronchus          |
| Bronchioles | respiratory bronchiole, terminally bronchiole, alveoli |
| Lungs       | left lung, right lung (larger)                         |

### Functional Anatomy

| Respiratory zone: | Microscopic structures: respiratory bronch-                                                   |  |
|-------------------|-----------------------------------------------------------------------------------------------|--|
| site of gas       | ioles, alveolar, ducts, alveoli                                                               |  |
| exchange          |                                                                                               |  |
| Alveoli           | ~300 million alveoli account for most of the lungs' volume, <i>main site for gas exchange</i> |  |
|                   | Surrounded by fine elastic fibres                                                             |  |

### Functional Anatomy (cont)

|                                                                     | Contain open pores that connect adjacent alveoli, allow air pressure throughout lung to be equalised |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                     | House alveolar macrophages that keep alveolar surfaces sterile                                       |  |  |  |
| Conducting zone                                                     | Conduits to gas exchange sites                                                                       |  |  |  |
|                                                                     | Includes all other respiratory structures                                                            |  |  |  |
| Trachea                                                             | Windpipe: from larynx into mediastinum                                                               |  |  |  |
|                                                                     | Wall composed of 3 layers: mucosa, submucosa, adventitia                                             |  |  |  |
|                                                                     | Carina: Last tracheal cartilage, point where trachea branches into two bronchi                       |  |  |  |
| Conducting<br>zone<br>structures                                    | Trachea ➔ right and left primary bronchi                                                             |  |  |  |
|                                                                     | Primary bronchus ➔ secondary bronchi ➔ 3rd, 4th etc.                                                 |  |  |  |
|                                                                     | Bronchioles: < 1mm diameter                                                                          |  |  |  |
|                                                                     | Terminal bronchioles: < 0.5mm diameter                                                               |  |  |  |
| Respiratory muscles                                                 | Diaphragm and other muscles that promote ventil-<br>ation                                            |  |  |  |
|                                                                     |                                                                                                      |  |  |  |
| Respiratory Vo                                                      |                                                                                                      |  |  |  |
| Adult Male ave                                                      |                                                                                                      |  |  |  |
| Tidal volume (1                                                     |                                                                                                      |  |  |  |
| 500mL                                                               | 500mL                                                                                                |  |  |  |
| amount of air il                                                    | nhaled/exhaled each breath at rest                                                                   |  |  |  |
| Inspiratory rese                                                    | erve volume (IRV)                                                                                    |  |  |  |
| 3100mL                                                              | 1900mL                                                                                               |  |  |  |
| amount of air during forceful inhalation after normal TV            |                                                                                                      |  |  |  |
| Expiratory reserve volume (ERV)                                     |                                                                                                      |  |  |  |
| 1200mL                                                              | 700mL                                                                                                |  |  |  |
| amount of air during forceful exhalation after normal TV exhalation |                                                                                                      |  |  |  |
| Residual volume (RV)                                                |                                                                                                      |  |  |  |
| 1200mL 1100mL                                                       |                                                                                                      |  |  |  |
| amount of air r                                                     | amount of air remaining in lungs after forced exhalation                                             |  |  |  |

By zpms1207 cheatography.com/zpms1207/ Published 27th May, 2022. Last updated 27th May, 2022. Page 1 of 4.

# Respiratory System Cheat Sheet by zpms1207 via cheatography.com/147948/cs/32198/

| Respiratory Ca                                                            | pacities                                                                           | Partial Pressure Gradient (cont)                                                          |                                                                               |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Adult Male ave                                                            | erage Adult Female average                                                         | Example: Atmospheric pressu                                                               | re is 760mmHg at sea level                                                    |
| Total lung capa                                                           | ucity (TLC)                                                                        | Oxygen constitutes                                                                        | ~21% of the atmosphere                                                        |
| 6000mL                                                                    | 4200mL                                                                             | 21% x 760 = 159mmHg                                                                       |                                                                               |
| max amount of<br>TLC = TV+IRV                                             | air contained in lungs after max inspiratory effort:<br>+ERV+RV                    | Mechanisms of Breathing: Pulmor                                                           | ary Ventilation                                                               |
| Vital capacity (                                                          | VC)                                                                                | Inspiration and expiration                                                                | Inspiration: gases flow i                                                     |
| 4800mL                                                                    | 3100mL                                                                             |                                                                                           | lungs                                                                         |
| max amount of<br>= TV+IRV+ER                                              | f air that can be expired after max inspiratory effort: VC                         |                                                                                           | Expiration: gases exit th<br>lungs                                            |
| Inspiratory cap                                                           | acity (IC)                                                                         | Mechanical processes dependant                                                            | -                                                                             |
| 3600mL                                                                    | 2400mL                                                                             | volume changes in thoracic cavity                                                         |                                                                               |
| max amount of<br>TV+IRV                                                   | air that can be inspired after normal expiration: IC =                             |                                                                                           | Pressure changes <b>→</b> ga<br>flow to equalise pressur                      |
| Functional resi                                                           | dual capacity (FRC)                                                                | Boyle's Law                                                                               | Relationship between                                                          |
| 2400mL                                                                    | 1800mL                                                                             |                                                                                           | pressure and volume of                                                        |
| volume of air re                                                          | emaining in lungs after normal TV expiration: FRC =                                |                                                                                           | gas                                                                           |
| ERV+RV                                                                    |                                                                                    | Mechanics of Breathing: Inspiratio                                                        | n                                                                             |
| Dulmonon ( Fur                                                            | ation Tooto                                                                        | Inspiration                                                                               | Expiration                                                                    |
| Pulmonary Fun                                                             |                                                                                    | Sequence of events                                                                        |                                                                               |
| Spirometer                                                                |                                                                                    | <ol> <li>Inspiratory muscles contract →<br/>diaphragm descends, rib cage rises</li> </ol> | 1. Inspiratory muscles rela                                                   |
|                                                                           | d to measure respiratory volumes/capacities                                        |                                                                                           |                                                                               |
| Can distin-<br>guish                                                      | Obstructive pulmonary disease: increased airway resistance e.g. bronchitis, asthma |                                                                                           | descends due to costal<br>cartilage recoil                                    |
| between                                                                   |                                                                                    | 2. Thoracic cavity volume increase                                                        | -                                                                             |
|                                                                           | Restrictive disorders: reduction in TLC due to struct-                             | , , , , , , , , , , , , , , , , , , ,                                                     | decreases                                                                     |
| ural/functional lung changes e.g. fibrosis, tuberc-                       |                                                                                    | 3. Lungs are stretched → intrapulm- 3. Elastic                                            | - 3. Elastic lungs recoil                                                     |
|                                                                           | ulosis (TB)                                                                        | onary volume increases                                                                    | passively <b>&gt;</b> intrapulmonar                                           |
| Minute ventil-                                                            | Total amount of gas flow into/out of respiratory tract                             |                                                                                           | volume decreases                                                              |
| ation                                                                     | in 1 minute                                                                        | 4. Intrapulmonary pressure drops                                                          | 4. Intrapulmonary pressur                                                     |
| Forced vital Gas forcibly expelled after taking a deep breath<br>capacity |                                                                                    | →-1mmHg                                                                                   | rises →+1mmHg                                                                 |
| (FVC)                                                                     |                                                                                    | 5. Air flows into lungs down its<br>pressure gradient until intrapulm-                    | <ol> <li>Air flows out of lungs do<br/>its pressure gradient until</li> </ol> |
| Forced                                                                    | Amount of gas expelled during specific time                                        | onary volume = 0 <i>(equal to atmos</i> )                                                 |                                                                               |
| expiratory                                                                | intervals of FVC                                                                   | heric pressure)                                                                           |                                                                               |
| volume (FEV)                                                              |                                                                                    |                                                                                           |                                                                               |

#### Partial Pressure Gradient

Dalton's Law of Partial Pressures Total pressure exerted by mixture of gases is the sum of pressures exerted by each Partial pressure of each gas is directly propor-

tional to its percentage in the mixture

# By zpms1207

cheatography.com/zpms1207/ Last upo

Published 27th May, 2022. Last updated 27th May, 2022. Page 2 of 4.

# Respiratory System Cheat Sheet by zpms1207 via cheatography.com/147948/cs/32198/

| Internal Respiratio                                                                                                   | n                                                                       |                                                                                                                                            | Control of Respiration (cont)                                            |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Capillary gas exchange in body tissues                                                                                |                                                                         | Rhythm-generating and                                                                                                                      | Can modify respiratory rate/r-                                           |                                                                                                                           |
| Partial pressures a gradients are reve                                                                                |                                                                         | pO2 in tissue is always lower than in systemic                                                                                             | -                                                                        | hythm even if CO2 and O2 levels<br>are normal                                                                             |
| external respiration                                                                                                  | n                                                                       | arterial blood<br>pO2 of venous blood in<br>40mmHg                                                                                         | ,                                                                        | <ul> <li>Decreased pH may reflect CO2<br/>retention, accumulation of lactic<br/>acids, excess ketone bodies in</li> </ul> |
|                                                                                                                       |                                                                         | pCO2 is 45mmHg                                                                                                                             |                                                                          | diabetic Pts                                                                                                              |
| External Respiration                                                                                                  | on                                                                      |                                                                                                                                            |                                                                          | Respiratory system controls will<br>attempt to raise the pH by<br>increasing respiratory rate and                         |
| Exchange of O2 and CO2 across the respiratory membrane                                                                |                                                                         |                                                                                                                                            | increasing respiratory rate and<br>depth                                 |                                                                                                                           |
| Influenced Partial pressure gradients by:                                                                             |                                                                         | Expiratory neurone inhibit the                                                                                                             | inspiratory neurone                                                      |                                                                                                                           |
| G                                                                                                                     | as solubilities                                                         |                                                                                                                                            | Oxygen Transport                                                         |                                                                                                                           |
|                                                                                                                       | entilation-perfusion ('<br>tructural characteristi                      |                                                                                                                                            | Molecular O2 is carried in the blood                                     | 1.5% dissolved in plasma                                                                                                  |
| Control of Respirat                                                                                                   | embrane                                                                 |                                                                                                                                            |                                                                          | 98.5% loosely bound to each<br>Fe of haemoglobin (Hb) in<br>RBCs                                                          |
| Medullary                                                                                                             | Pontine Respir-                                                         | Chemical Factors                                                                                                                           |                                                                          | 4x bound O2 per Hb                                                                                                        |
| Respiratory<br>Centres                                                                                                | atory Centres                                                           |                                                                                                                                            | O2 and Hemoglobin                                                        | Oxyhemoglobin (HBO2):<br>hemoglobin-O2 combination                                                                        |
| Involves neurons<br>in the reticular<br>formation of the                                                              | Influence and<br>modify activity of<br>the VRG                          | Influence of pO2                                                                                                                           |                                                                          | Reduced hemoglobin (HSB):<br>haemoglobin that has released<br>O2                                                          |
| medulla and pons                                                                                                      |                                                                         |                                                                                                                                            | Influence of pO2 on Hemoglobin Saturation                                | Oxygen-hemoglobin dissoc-<br>iation curve                                                                                 |
| 1. Dorsal respir-<br>atory group<br>(DRG)                                                                             | Smooth out<br>tradition between<br>inspiration/exp-<br>iration and vice | <ul> <li>Peripheral chemorece-<br/>ptors in the aortic and<br/>carotid bodies are O2<br/>sensors</li> </ul>                                |                                                                          | Shows how binding and release of O2 is influenced by the pO2                                                              |
|                                                                                                                       | versa                                                                   | 0010010                                                                                                                                    | Hemoglobin Saturation Influencir                                         | ng Factors                                                                                                                |
| <ul> <li>Near the root</li> <li>of cranial nerve</li> <li>IX</li> </ul>                                               |                                                                         | (when excited, they cause<br>respiratory centres to<br>increase ventilation)                                                               | Increases in temperature, H+,<br>pCO2, and 2,3-biphosphoglycera<br>(BPG) | Modify Hb structure<br>ate decreasing affinity for O2                                                                     |
| <ul> <li>Integrates</li> <li>input from</li> <li>peripheral stretch</li> <li>and chemorece-</li> <li>ptors</li> </ul> |                                                                         | <ul> <li>Substantial drops in<br/>arterial pO2 (to 60mmHg)<br/>must occur in order to<br/>stimulate increased ventil-<br/>ation</li> </ul> |                                                                          | Occur in systemic capillaries                                                                                             |
| 2. Ventral respir-<br>atory group<br>(VRG)                                                                            |                                                                         | Influence of arterial pH                                                                                                                   |                                                                          |                                                                                                                           |



By zpms1207 cheatography.com/zpms1207/ Published 27th May, 2022. Last updated 27th May, 2022. Page 3 of 4.

## Respiratory System Cheat Sheet by zpms1207 via cheatography.com/147948/cs/32198/

### Oxygen Transport (cont)

Increases O2 unloading

Shifts HbO2 dissociation curve to the right

Decreases in these factors shift the curve to the left by decreasing O2 unloading

| Carbon Dioxide Transport                                                               |                                                                                                            |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| CO2 is transported in the blood in three forms                                         | 7-10% dissolved in plasma                                                                                  |
|                                                                                        | 20% bound to globin of Hb <i>(carba-</i><br><i>minohemoglobin)</i>                                         |
|                                                                                        | 70% transported as bicarbonate ions <i>(HCO3-)</i> in plasma                                               |
| CO2 combines with water to<br>form carbonic acid (H2CO3),<br>which quickly dissociates | CO2 + H2O ↔ H2CO3 ↔ H+ +<br>HCO3-                                                                          |
| In systemic capillaries                                                                | HCO3- quickly diffuses from RBCs into plasma                                                               |
|                                                                                        | Chloride shift occurs when outrush<br>of HCO3- from the RBCs is<br>balanced as CI- moves in from<br>plasma |
| In pulmonary capillaries                                                               | HCO3- moves into RBCs, binds with<br>H+ to form H2CO3                                                      |
|                                                                                        | H2CO3 is split by carbonic anhydrase into CO2 and H2O                                                      |
|                                                                                        | CO2 diffuses into the alveoli                                                                              |

### By zpms1207

cheatography.com/zpms1207/

Published 27th May, 2022. Last updated 27th May, 2022. Page 4 of 4.