
CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

UnixUnix

UnixUnix: a set of standards and tools commonly
used in software development.

The command-linecommand-line is a text-based interface
(i.e., terminal interface) to navigate a
computer, instead of a Graphical User
Interface (GUI).

Unix CommandsUnix Commands

cdcd – change directories (..)

lsls – list directory contents (-l, -a: hidden
files)

mkdirmkdir – make directory

emacsemacs – open text editor

rmrm – remove file or folder (-rf)

rmdirrmdir - remove empty dir

manman – view manual pages

tree cs107 -Ftree cs107 -F (show files and directories in
tree)

pwdpwd - output absolute path to current
location

cp source destcp source dest - copy (-r to copy directory)

mvmv - move (rename)

cat file1 (file2 file3)cat file1 (file2 file3) print file(s one after
another)

grep "binky(.*)" program.cgrep "binky(.*)" program.c - search text in
files (. any char, * zero or more repeats of
left char, ^ beginning of line, $ end of line)

find assign1 -name "*.c"find assign1 -name "*.c" - search the
assign1 folder for all .c files

diff hello.c hello2.cdiff hello.c hello2.c - find the diff of two files

./hello > outputFile.txt./hello > outputFile.txt - save output to file

>>>> - append the output to an existing file

diff file1.c file2.c | grep "#include" | wc -ldiff file1.c file2.c | grep "#include" | wc -l -
pipe, find # of diff lines that contain #include
for two files

./addTwoNumbers < twoNumbers.txt./addTwoNumbers < twoNumbers.txt - read
user input from file

Bits and BytesBits and Bytes

Two's ComplementTwo's Complement: binary digits inverted,
plus 1

OverflowOverflow: Exceed max val-->overflow back
to smallest; below min val-->overflow back
to largest

SCHAR_MIN (-128), UCHAR_MAX (255),
SHRT_MIN, INT_MAX (2147483647),
UINT_MAX, ULONG_MAX

CastingCasting: Replicate bit, interpreted differently
(int v = -1; unsigned int uv = v; / (unsigned
int) v/ -12345U)

C will implicitly cast the signed argument to
unsigned when comparing

Max is 0 followed by all 1s, min is 1
followed by all 0s in signed

Expanding bit representation: zero
(unsigned) / sign extension (signed);
promote to larger type for comparison

Truncating bit representation: discard more
significant bits

bitwise operatorsbitwise operators: &, |, ~, ^, <<, >>

^ with 1 to flip, with 0 to let a bit go through

^ flip isolated bits, ~ flip all bits

num & (num - 1): clears the lowest 1

Right shift fills with sign bit (signed,
arithmetic right shift); fills with 0s (unsigned,
logical right shift)

long num = 1L << 32;long num = 1L << 32;, CHAR_BIT = 8

int sign = value >> (sizeof(int) * CHAR_BIT -
1); return (value ^ sign) - sign;

Characters and C StringsCharacters and C Strings

char: single character / "glyph" ('\\', '\n', 'A'
(65)), represented as int (ASCII), lowercase
32 more than upper

isalpha(ch) (alphabet), islower, isupper,
isspace (space, \t, \n...), isdigit, toupper,
tolower (return char, not modify existing)

C Strings: array of chars with '\0', null-term‐
inating character, pass char* as param
(add. of 1st char), str == &str[0]

Characters and C Strings (cont)Characters and C Strings (cont)

int foo(char *str) == int foo(char str[]), str-
pointer (char** argv == char* argv[], double
pointer)

Pointers and ArraysPointers and Arrays

PointerPointer: A variable that stores a memory
address

MemoryMemory: A big array of bytes; each byte
unique numeric index (generally written in
hex)

**: declaration-pointer, operation-derefere‐
nce/value at address

Pass value as param, C passes a copy of
the value; take add (ptr) as a param, go to
add when need val

char* could also ptr to single charsingle char

create strings as char[], pass them around
as char *

Avoid &str when str is char[]! str/&str[0]

&arr does nothing on arrays, but &ptr on
pointers gets its address

sizeof(arr) gets the size of an array in bytes,
but sizeof(ptr) is always 8

An array variable refers to an entire block of
memory. CannotCannot reassign an existing array
to be equal to a new array.

Pass an array as param, C makes copy of
add. of 1st element and pass a ptr to
function (No sizeof with param!!)

Stack Memory and Heap MemoryStack Memory and Heap Memory

The stackstack is the place where all local
variables and parameters live for each
function. Goes downwards when func
called and shrinks upwards when func
finished

The heapheap is a part of memory below the
stack. Only goes away when free. Grows
upward. Dynamic memory during program
runtime.

Allocate with malloc/realloc/strdup/callocmalloc/realloc/strdup/calloc,
e.g. int *arr = malloc(sizeof(int)*len));
assert(arr != NULL); free(arr);

By yueqiaoyueqiao
cheatography.com/yueqiao/

Not published yet.
Last updated 11th December, 2022.
Page 1 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems
http://www.cheatography.com/yueqiao/
https://readable.com

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Stack Memory and Heap Memory (cont)Stack Memory and Heap Memory (cont)

int *scores = calloc(n_elem, sizeof(int));
(zeros out memory); char* str = strdup("He‐
llo"); malloc + strcpy

CANNOT free part of previous alloc, MUST
free add received in alloc

A memory leakmemory leak is when you do not free
memory you previously allocated.

char *str = strdup("Hello"); str = realloc(str,
new_len + 1); (Must be ptrs returned by
malloc, etc.), automatic free of prev smaller
one

GenericsGenerics

void*void*: any pointer, No dereferencing/Pointer
Arithmetic (cast to char* to do pointer
arithmetic)

memcpymemcpy is a function that copies a specified
amount of bytes at one address to another
address (returns dest).

memmovememmove handles overlapping memory
figures (returns dest)

Function pointers: [return type] (*[name])([p‐
arameters]) ("callback" function, function
writer vs function caller)

qsort: sort arr of any type; bsearch: binary
search to search for a key in arr any type;
lfind: linear search to search for key (return
NULL not found); lsearch: linear search, add
key if not found

GDBGDB

GDB: p/x num (hex), p/d num (digit), p/t num
(binary), p/c num (char), p/u (unsigned
decimal); p nums[1]@2 (start at nums[1]
print 2)

gdb myprogram; b main; r 82 (run with arts);
n, s, continue (next,step into, continue); info
(args, locals)

ctrl-c + backtracebacktrace - display the current call
stack, meaning what functions are currently
executing.

OptimizationnOptimizationn

Optimization: task of making program
faster/more efficient with space or time

gcc -O0 (mostly literal translation), O2
(enable nearly all reasonable optimizat‐
ions), O3 (more aggressive, trade size for
speed), Os (optimize for size), -Ofast
(disregard standards compliance)

Target: static instruction count, dynamic,
cycle count/execution time

Constant Folding pre-calculates constants
at compile-time where possible.

Common Sub-Expression Elimination
prevents the recalculation of the same thing
many times by doing it once and saving the
result.

Dead code elimination removes code that
doesn't serve a purpose (empty for loop,
if/else same operation)

Strength reduction changes divide to
multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost
many cycles (multiply and divide)

Code motion moves code outside of a loop
if possible.

Tail recursion is an example of where GCC
can identify recursive patterns that can be
more efficiently implemented iteratively.

Loop unrolling: Do n loop iterations' worth of
work per actual loop iteration, so we save
ourselves from doing the loop overhead
(test and jump) every time, and instead
incur overhead only every n-th time.

Heap AllocatorHeap Allocator

A heap allocator is a suite of functions that
cooperatively fulfill requests for dynamically
allocated memory.

When initialized, a heap allocator tracks the
base addr and size of a large contiguous
block of memory: heap.

Heap Allocator (cont)Heap Allocator (cont)

Throughput: # requests completed per unit
time (minimizing avg time to satisfy a
request) vs Utilization: how efficiently we
make use of the limited heap memory to
satisfy requests.

Utilization: largest addr used as low as
possible

Internal Fragmentation: allocated block
larger than what's needed, external fragme‐
ntation; no single block large enough to
satisfy allocation request, even though
enough aggregate free memory available

Implicit free list allocator: 8 byte (or larger)
header, by storing header info, implicitly
maintaining a list of free blocks (malloc
linear in total number of blocks)

Explicit free list allocator: stores ptrs to next
and previous free block inside each free
block's payload (look just the free blocks on
linked list for malloc, linear in # free blocks,
update linked list when free), throughput
increase, costs: design and internal fragme‐
ntation

Assembly: Control Flow & Function CallAssembly: Control Flow & Function Call

%rip%rip stores addr of next instruction to
execute (%rip += size of bytes of curr
instruction)

direct jump: jum Label, indirect jump: jmp
*%rax (jump to instruction at addr in %rax)

Condition codeCondition code regs store info about most
recent arithmetic/logical operation (lealea NOT
update; logical like xor set CF & OF to 0;
shift set CF to last bit shifted out and OF to
0; inc and dec set OF and ZF, leave CF
unchanged)

CF: unsigned overflow, OF: two's-com‐
plement overflow/underflow

testtest and cmpcmp just set condition codes (not
store result)

static instruction countstatic instruction count: # of written instru‐
ctions; dynamic instruction countdynamic instruction count: # of
executed instructions when program is run

By yueqiaoyueqiao
cheatography.com/yueqiao/

Not published yet.
Last updated 11th December, 2022.
Page 2 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems
http://www.cheatography.com/yueqiao/
https://readable.com

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Assembly: Control Flow & Function CallAssembly: Control Flow & Function Call
(cont)(cont)

%rsp%rsp: stores addr of "top" of stack, must
point to same place before func called and
after returned

push: R[%rsp]<-R[%rsp] - 8; pop+8

callcall: push next value of %rip onto stack, set
%rip point to beginning of specified
function's instructions

retret: pops instruction addr from stack and
stores it in %rip

stored %rip: return addressreturn address, addr of instru‐
ction where execution would have
continued had flow not been interrupted by
function call

nopnop: no-op, do nothing (make functions
align); mov %ebx,%ebx, zeros out top 32
bits; xor %ebx,%ebx, set to 0, optmizes for
performances & code size

Suppose %rcx stores arr[1] addr, to get
arr[0] value: p *((int*)$rcx-1)

Assembly: Arithmetic and LogicAssembly: Arithmetic and Logic

Machine code 1s and 0s, human-readable
form assembly (GCC compiler)

Sequential instructions sequential in
memory

Instruction operation name "opcode" (mov,
add, etc.), "operands" (arguments, max 2)

$[number] constant value, "immediate"; %
[name] register

Register: fast read/write memory slot right
on CPU that can hold variable values (not in
memory, 64-bit space inside processor,
total 16)

mov: $ only src, % both, memory location at
least one (copy value at addr)

Indirect(): dereferencing, (%rbx) copy value
at addr stored in %rbx

%rip: addr of next instruction to execute

%rsp: addr of current top of stack

movlmovl writing to reg also set high order 4
bytes to 0

movabsqmovabsq 64-bit immediate, movq only 32-
bit. 64-bit imm src, only reg as dest

Assembly: Arithmetic and Logic (cont)Assembly: Arithmetic and Logic (cont)

movz, movs, smaller src larger dst, src:
memory/reg, dest: reg

cltqcltq: sign-extend %eax to %rax

parentheses require regs in par. be 64-bit

movmov copies data atat addr, lealea copies value of
src (addr) itselfitself (only lea not dereferencing)

inc Dinc D D<-D + 1, dec Ddec D D <- D-1

shift k, D, k only %cl (w bits data, looks at
lower-order log2(w)log2(w) bits of %cl to know how
much to shift) or imm

imulimul: two operands, multiplies and truncates
to fit in the second; one operand, multiplies
by %rax, higher-order 64 bits in %rdx, lower
in %rax

idivqidivq: divide 128-bit by 64-bit, higher-order
64 bit of dividend stored in %rdx, lower
order %rax, only list divisor as operand
(quotient %rax, remainder %rdx, cqtocqto sign-
extends 64-bit dividend)

C Program ExampleC Program Example

#define CONSTANT 0x8
int main(int argc, char *argv[])
{
 char *prefix = "CS";
 int number = 107;
 // %s (string), %d
(integer), %f (double)
 printf("You are in
%s%d\n", prefix, number);
 return 0;
}

Assignment 0Assignment 0

Assignment 0 (cont)Assignment 0 (cont)

// void error(int status, int
errnum, const char *format,
...);
 err‐
or(1, 0, "out of range");
 }
 }
 print_triangle(‐
nlevels);
 return 0;
}

Assignment 1Assignment 1

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems

/* Unix
ls samples/server_files/‐
home/ >> home_dir.txt
diff samples/server_fil‐
es/users.list home_dir.txt
grep "sudo" samples/serv‐
er_files/home/mattv/.b‐
ash_history */
int main(int argc, char *argv[])
{
 int nlevels = DEFAUL‐
T_LEVELS;
 if (argc > 1) {
 nlevels =
atoi(argv[1]);
 if (nlevels < 0
|| nlevels > 8) {

long signed_max(int bitwidth) {
 return ~signed_min(‐
bitwidth);
}
long signed_min(int bitwidth)
{
 return -1L << (bitwidth
- 1);
}
long sat_add(long operand1,
long operand2, int bitwidth) {
 if (!((operand1 >>
(bitwidth - 1)) & 1L) &&
 !((operand2 >>
(bitwidth - 1)) & 1L) &&
 (((operand1 +
operand2) >> (bitwidth - 1)) &
1L)) {
 return signed‐
_max(bitwidth);
 }
 if (((operand1 >>
(bitwidth - 1)) & 1L) &&
 ((operand2 >> (bitwidth
- 1)) & 1L) &&
 !(((operand1 +
operand2) >> (bitwidth - 1)) &
1L)) {
 return signed‐
_min(bitwidth);
 }
 return operand1 +
operand2;
}
int to_utf8(unsigned short
code_point, unsigned char
utf8_bytes[]) {
 if (code_point <= 0x7f)
{
 utf8_bytes[0]
= code_point;
 return 1;
 } else if (code_point <=
0x7ff) {
 utf8_bytes[0]
= 0xc0; // represents 11000000.

By yueqiaoyueqiao
cheatography.com/yueqiao/

Not published yet.
Last updated 11th December, 2022.
Page 3 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/yueqiao/
https://readable.com

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Assignment 1 (cont)Assignment 1 (cont)

 utf8_bytes[1]
= 0x80; // represents 10000000.
 utf8_bytes[0]
|= (code_point & 0x7c0) >> 6;
// 0x7c0 provides the bit mask
11100000.
 utf8_bytes[1]
|= code_point & 0x3f; // 0x3f
provides the bit mask 00111111.
 return 2;
 } else {
 utf8_bytes[0]
= 0xe0; // represents 11100000.
 utf8_bytes[1]
= 0x80; // represents 10000000.
 utf8_bytes[2]
= 0x80; // represents 10000000.
 utf8_bytes[0]
|= (code_point & 0xf000) >> 12;
// 0xf000 provides the bit mask
1111000000000000.
 utf8_bytes[1]
|= (code_point & 0xfc0) >> 6;
// 0xfc0 provides the bit mask
0000111111000000.
 utf8_bytes[2]
|= code_point & 0x3f; // 0x3f
provides the bit mask 000000‐
0000111111.
 return 3;
 }
}
#define BIT_MASK_3 7L
unsigned long advance(unsigned
long cur_gen, unsigned char
ruleset) {
 unsigned long next_gen
= 0;
 unsigned long neighb‐
orhood = 0;
 neighborhood =
(cur_gen << 1) & BIT_MASK_3;
 next_gen |= (ruleset >>
neighborhood) & 1L;
 for (int i = 0; i <=
sizeof(long) * CHAR_BIT - 2;
++i) {
 neighborhood =
(cur_gen >> i) & BIT_MASK_3;

Assignment 1 (cont)Assignment 1 (cont)

 pri‐
ntf(LIVE_STR);
 } else {
 pri‐
ntf(EMPTY_STR);
 }
 }
 printf("\n");
}

Assignment 2Assignment 2

Assignment 2 (cont)Assignment 2 (cont)

 buf[maxlen] = '\0';
 *p_input = begin +
maxlen;
 return true;
}
int main(int argc, char argv[],
const char envp[]) {
 const char *searchpath
= get_env_value(envp, "MYP‐
ATH");
 if (searchpath == NULL)
{
 searchpath =
get_env_value(envp, "PAT‐
H");
 }
 if (argc == 1) {
 char dir[PATH_‐
MAX];
 const char
*remaining = searchpath;
 printf("Di‐
rectories in search path:\n");
 while (scan_‐
token(&remaining, ":", dir,
sizeof(dir))) {
 pri‐
ntf("%s\n", dir);
 }
 } else {
 for (size_t i =
1; i < argc; ++i) {
 const
char *executable = argv[i];
 char
dir[PATH_MAX];
 const
char *remaining = searchpath;
 while
(scan_token(&remaining,
":", dir, sizeof(dir))) {
 ‐
strcat(dir, "/");
 ‐
strcat(dir, executable);
 i
f (access(dir, R_OK | X_OK) ==
0) {
 ‐

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems

 next_gen |=
((ruleset >> neighborhood) &
1L) << (i + 1);
 }
 return next_gen;
}
void draw_generation(un‐
signed long gen) {
 for (int i = sizeof‐
(long) * CHAR_BIT - 1; i >= 0; -
-i) {
 if ((gen >> i) &
1L) {

const char *get_env_value(const
char envp[], const char key) {
 int lenKey = strlen‐
(key);
 for (int i = 0; envp[i]
!= NULL; ++i) {
 char* match =
strstr(envp[i], key);
 if (match ==
envp[i] && *(match + lenKey) ==
'=') {
 return
match + lenKey + 1;
 }
 }
 return NULL;
}
bool scan_token(const char
**p_input,
const char *delimiters, char
buf[], size_t buflen) {
 const char begin =

p_input;
 begin += strspn(begin,
delimiters);
 const char* end = begin
+ strcspn(begin, delimiters);

 int maxlen = 0;
 if (end - begin <= buflen
- 1) {
 maxlen = end -
begin;
 } else {
 maxlen = buflen
- 1;
 }
 if (maxlen <= 0) {
 *p_input =
begin;
 return false;
 }
 strncpy(buf, begin,
maxlen);

 printf("%s\n", dir);
 ‐
 break;
 }
 }
 }
 }
 return 0;
}

By yueqiaoyueqiao
cheatography.com/yueqiao/

Not published yet.
Last updated 11th December, 2022.
Page 4 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/yueqiao/
https://readable.com

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Assignment 3Assignment 3

char *read_line(FILE
*file_pointer) {
 char* buffer = malloc‐
(MINIMUM_SIZE);
 assert(buffer !=
NULL);
 size_t curSize =
MINIMUM_SIZE;
 char* curPtr = fgets(‐
buffer, curSize, file_poin‐
ter);
 if (curPtr == NULL) {
 free(buffer);
 return NULL;
 }
 size_t strLen = strlen‐
(buffer);
 while (*(buffer + strLen
- 1) != '\n') {
 curSize *= 2;
 buffer =
realloc(buffer, curSize);
 assert(buffer
!= NULL);
 curPtr = buffer
+ strLen;
 char* newPtr =
fgets(curPtr, curSize - strLen,
file_pointer);
 if (newPtr ==
NULL) {
 *curPtr
= '\0';
 break;
 } else {
 curPtr =
newPtr;
 }
 strLen +=
strlen(curPtr);
 }
 if (*(buffer + strLen -
1) == '\n') {
 *(buffer +
strLen - 1) = '\0';
 }
 return buffer;
}
void print_last_n(FILE

Assignment 3 (cont)Assignment 3 (cont)

 idx = (idx + 1) %
n;
 ++cnt_read;
 }
 if (cnt_read < n) {
 idx = 0;
 } else {
 cnt_read = n;
 }
 line = lines[idx];
 size_t cnt_print = 0;
 while (cnt_print <
cnt_read) {
 printf("%s‐
\n", line);
 free(line);
 idx = (idx + 1) %
n;
 line = lines[‐
idx];
 ++cnt_print;
 }
}
struct Element {
 char* str;
 int cnt;
};
void print_uniq_lines(FILE
*file_pointer) {
 size_t curSize =
ESTIMATE;
 struct Element arr =

malloc(sizeof(struct

Element) curSize);
 assert(arr != NULL);
 size_t cntElement = 0;
 char* line = NULL;
 while ((line = read_l‐
ine(file_pointer)) != NULL)
{
 bool found =
false;
 for (size_t i =
0; i < cntElement; ++i) {
 if
(strcmp(line, arr[i].str) == 0)
{
 ‐
++arr[i].cnt;

Assignment 3 (cont)Assignment 3 (cont)

 }
 if (!found) {
 arr‐
[cntElement].str = line;
 arr‐
[cntElement].cnt = 1;
 ++c‐
ntElement;
 if
(cntElement == curSize) {
 ‐
curSize += ESTIMATE;
 a
rr = realloc(arr, sizeof‐
(struct Element) * curSize);
 ‐
assert(arr != NULL);
 }
 }
 }
 for (size_t i = 0; i <
cntElement; ++i) {
 printf("%7d
%s\n", arr[i].cnt, arr[i].str);
 free(arr[‐
i].str);
 }
 free(arr);
}

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems

*file_pointer, int n) {
 char* lines[n];
 char* line = NULL;
 int idx = 0;
 size_t cnt_read = 0;
 while ((line = read_l‐
ine(file_pointer)) != NULL)
{
 lines[idx] =
line;

 ‐
found = true;
 ‐
free(line);
 ‐
break;
 }

By yueqiaoyueqiao
cheatography.com/yueqiao/

Not published yet.
Last updated 11th December, 2022.
Page 5 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/yueqiao/
https://readable.com

	CS107 Computer Organization and Systems Cheat Sheet - Page 1
	Unix
	Bits and Bytes
	Pointers and Arrays
	Unix Commands
	Stack Memory and Heap Memory
	Characters and C Strings

	CS107 Computer Organization and Systems Cheat Sheet - Page 2
	Optimizationn
	Generics
	Assembly: Control Flow & Function Call
	GDB
	Heap Allocator

	CS107 Computer Organization and Systems Cheat Sheet - Page 3
	Assignment 1
	C Program Example
	Assembly: Arithmetic and Logic
	Assignment 0

	CS107 Computer Organization and Systems Cheat Sheet - Page 4
	Assignment 2

	CS107 Computer Organization and Systems Cheat Sheet - Page 5
	Assignment 3

