Cheatography

Unix: a set of standards and tools commonly

used in software development.

The command-line is a text-based interface
(i.e., terminal interface) to navigate a
computer, instead of a Graphical User
Interface (GUI).

Unix Commands

cd - change directories (..)

Is — list directory contents (-I, -a: hidden
files)

mkdir — make directory
emacs — open text editor

rm — remove file or folder (-rf)
rmdir - remove empty dir
man — view manual pages

tree cs107 -F (show files and directories in
tree)

pwd - output absolute path to current
location

cp source dest - copy (-r to copy directory)
mv - move (rename)

cat file1 (file2 file3) print file(s one after
another)

grep "binky(.*)" program.c - search text in
files (. any char, * zero or more repeats of

left char, A beginning of line, $ end of line)

wk "

find assign1 -name "*.c" - search the

assign1 folder for all .c files

diff hello.c hello2.c - find the diff of two files
./hello > outputFile.txt - save output to file
>> - append the output to an existing file

diff file1.c file2.c | grep "#include" | wc -l -
pipe, find # of diff lines that contain #include
for two files

JaddTwoNumbers < twoNumbers.txt - read

user input from file

By yuegiao
cheatography.com/yueqiao/

Bits and Bytes
Two's Complement: binary digits inverted,
plus 1

Overflow: Exceed max val-->overflow back
to smallest; below min val-->overflow back
to largest

SCHAR_MIN (-128), UCHAR_MAX (255),
SHRT_MIN, INT_MAX (2147483647),
UINT_MAX, ULONG_MAX

Casting: Replicate bit, interpreted differently
(int v = -1, unsigned int uv = v;| (unsigned
int) vl -12345U)

C will implicitly cast the signed argument to
unsigned when comparing

Max is O followed by all 1s, min is 1
followed by all Os in signed

Expanding bit representation: zero
(unsigned) / sign extension (signed);
promote to larger type for comparison
Truncating bit representation: discard more
significant bits

bitwise operators: &, |, ~, A, <<, >>

A with 1 to flip, with 0 to let a bit go through
A flip isolated bits, ~ flip all bits

num & (num - 1): clears the lowest 1

Right shift fills with sign bit (signed,
arithmetic right shift); fills with Os (unsigned,
logical right shift)

long num = 1L << 32;, CHAR_BIT =8

int sign = value >> (sizeof(int) * CHAR_BIT -
1); return (value * sign) - sign;

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Characters and C Strings (cont)

int foo(char *str) == int foo(char str[]), str-
pointer (char** argv == char* argv([], double
pointer)

Pointers and Arrays

Pointer: A variable that stores a memory
address

Memory: A big array of bytes; each byte
unique numeric index (generally written in
hex)

*: declaration-pointer, operation-derefere-
nce/value at address

Pass value as param, C passes a copy of
the value; take add (ptr) as a param, go to
add when need val

char* could also ptr to single char

create strings as char[], pass them around
as char *

Avoid &str when str is char[]! str/&str[0]

&arr does nothing on arrays, but &ptr on
pointers gets its address

sizeof(arr) gets the size of an array in bytes,
but sizeof(ptr) is always 8

An array variable refers to an entire block of
memory. Cannot reassign an existing array
to be equal to a new array.

Pass an array as param, C makes copy of
add. of 1st element and pass a ptr to
function (No sizeof with param!!)

Characters and C Strings

char: single character / "glyph" (\\', \n', 'A’
(65)), represented as int (ASCII), lowercase
32 more than upper

isalpha(ch) (alphabet), islower, isupper,
isspace (space, \t, \n...), isdigit, toupper,
tolower (return char, not modify existing)

C Strings: array of chars with "\0', null-term-

inating character, pass char* as param
(add. of 1st char), str == &str[0]

Not published yet.
Last updated 11th December, 2022.
Page 1 of 8.

Stack Memory and Heap Memory

The stack is the place where all local
variables and parameters live for each
function. Goes downwards when func
called and shrinks upwards when func
finished

The heap is a part of memory below the
stack. Only goes away when free. Grows
upward. Dynamic memory during program

runtime.

Allocate with malloc/realloc/strdup/calloc,
e.g. int *arr = malloc(sizeof(int)*len));
assert(arr I= NULL); free(arr);

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems
http://www.cheatography.com/yueqiao/
https://apollopad.com

Cheatography

Stack Memory and Heap Memory (cont)

int *scores = calloc(n_elem, sizeof(int));
(zeros out memory); char* str = strdup("He-
llo"); malloc + strcpy

CANNOT free part of previous alloc, MUST

free add received in alloc

A memory leak is when you do not free
memory you previously allocated.

char *str = strdup("Hello"); str = realloc(str,
new_len + 1); (Must be ptrs returned by
malloc, etc.), automatic free of prev smaller

one

void*: any pointer, No dereferencing/Pointer
Arithmetic (cast to char* to do pointer
arithmetic)

memcpy is a function that copies a specified
amount of bytes at one address to another
address (returns dest).

memmove handles overlapping memory
figures (returns dest)

Function pointers: [return type] (*[name])([p-
arameters]) ("callback" function, function
writer vs function caller)

gsort: sort arr of any type; bsearch: binary
search to search for a key in arr any type;
Ifind: linear search to search for key (return
NULL not found); Isearch: linear search, add
key if not found

GDB: p/x num (hex), p/d num (digit), p/t num
(binary), p/c num (char), p/u (unsigned
decimal); p nums[1]@2 (start at nums[1]
print 2)

gdb myprogram; b main; r 82 (run with arts);
n, s, continue (next,step into, continue); info
(args, locals)

ctrl-c + backtrace - display the current call

stack, meaning what functions are currently
executing.

By yuegiao
cheatography.com/yuegiao/

Optimizationn

Optimization: task of making program
faster/more efficient with space or time

gcc -0O0 (mostly literal translation), O2
(enable nearly all reasonable optimizat-
ions), O3 (more aggressive, trade size for
speed), Os (optimize for size), -Ofast
(disregard standards compliance)

Target: static instruction count, dynamic,
cycle count/execution time

Constant Folding pre-calculates constants
at compile-time where possible.

Common Sub-Expression Elimination
prevents the recalculation of the same thing
many times by doing it once and saving the
result.

Dead code elimination removes code that
doesn't serve a purpose (empty for loop,
if/felse same operation)

Strength reduction changes divide to
multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost
many cycles (multiply and divide)

Code motion moves code outside of a loop
if possible.

Tail recursion is an example of where GCC
can identify recursive patterns that can be
more efficiently implemented iteratively.

Loop unrolling: Do n loop iterations' worth of
work per actual loop iteration, so we save
ourselves from doing the loop overhead
(test and jump) every time, and instead
incur overhead only every n-th time.

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Heap Allocator (cont)

Throughput: # requests completed per unit
time (minimizing avg time to satisfy a
request) vs Utilization: how efficiently we
make use of the limited heap memory to
satisfy requests.

Utilization: largest addr used as low as
possible

Internal Fragmentation: allocated block
larger than what's needed, external fragme-
ntation; no single block large enough to
satisfy allocation request, even though
enough aggregate free memory available

Implicit free list allocator: 8 byte (or larger)
header, by storing header info, implicitly
maintaining a list of free blocks (malloc
linear in total number of blocks)

Explicit free list allocator: stores ptrs to next
and previous free block inside each free
block's payload (look just the free blocks on
linked list for malloc, linear in # free blocks,
update linked list when free), throughput
increase, costs: design and internal fragme-
ntation

Heap Allocator

A heap allocator is a suite of functions that
cooperatively fulfill requests for dynamically
allocated memory.

When initialized, a heap allocator tracks the
base addr and size of a large contiguous
block of memory: heap.

Not published yet.
Last updated 11th December, 2022.
Page 2 of 8.

Assembly: Control Flow & Function Call

%rip stores addr of next instruction to
execute (%rip += size of bytes of curr
instruction)

direct jump: jum Label, indirect jump: jmp
*%rax (jump to instruction at addr in %rax)
Condition code regs store info about most
recent arithmetic/logical operation (lea NOT
update; logical like xor set CF & OF to 0;
shift set CF to last bit shifted out and OF to
0; inc and dec set OF and ZF, leave CF
unchanged)

CF: unsigned overflow, OF: two's-com-

plement overflow/underflow

test and cmp just set condition codes (not
store result)

static instruction count: # of written instru-
ctions; dynamic instruction count: # of
executed instructions when program is run

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems
http://www.cheatography.com/yueqiao/
https://apollopad.com

Cheatography

Assembly: Control Flow & Function Call

(cont)

%rsp: stores addr of "top" of stack, must
point to same place before func called and
after returned

push: R[%rsp]<-R[%rsp] - 8; pop+8

call: push next value of %rip onto stack, set
Y%rip point to beginning of specified
function's instructions

ret: pops instruction addr from stack and
stores it in %rip

stored %rip: return address, addr of instru-
ction where execution would have
continued had flow not been interrupted by
function call

nop: no-op, do nothing (make functions
align); mov %ebx,%ebx, zeros out top 32
bits; xor %ebx,%ebx, set to 0, optmizes for
performances & code size

Suppose %rcx stores arr[1] addr, to get
arr[0] value: p *((int*)$rcx-1)

Assembly: Arithmetic and Logic

Machine code 1s and Os, human-readable
form assembly (GCC compiler)

Sequential instructions sequential in
memory

Instruction operation name "opcode" (mov,
add, etc.), "operands" (arguments, max 2)
$[number] constant value, "immediate"; %
[name] register

Register: fast read/write memory slot right
on CPU that can hold variable values (not in
memory, 64-bit space inside processor,
total 16)

mov: $ only src, % both, memory location at
least one (copy value at addr)

Indirect(): dereferencing, (%rbx) copy value
at addr stored in %rbx

%rip: addr of next instruction to execute
Y%rsp: addr of current top of stack

movl writing to reg also set high order 4
bytes to 0

movabsq 64-bit immediate, movq only 32-
bit. 64-bit imm src, only reg as dest

Assembly: Arithmetic and Logic (cont)

movz, movs, smaller src larger dst, src:
memory/reg, dest: reg

cltq: sign-extend %eax to %rax
parentheses require regs in par. be 64-bit

mov copies data at addr, lea copies value of
src (addr) itself (only lea not dereferencing)

incD D<-D + 1,dec D D <- D-1

shift k, D, k only %cl (w bits data, looks at
lower-order log2(w) bits of %cl to know how
much to shift) or imm

imul: two operands, multiplies and truncates
to fit in the second; one operand, multiplies
by %rax, higher-order 64 bits in %rdx, lower
in %rax

idivq: divide 128-bit by 64-bit, higher-order
64 bit of dividend stored in %rdx, lower
order %rax, only list divisor as operand
(quotient %rax, remainder %rdx, cqto sign-
extends 64-bit dividend)

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Assignment 0 (cont)

// void error (int status, int
errnum, const char *format,
<)
err -
or(l, 0, "out of range");
}

}

pri nt tri ang le(-
nle vels);

return 0;

C Program Example

#define CONSTANT 0x8
int main(int argc, char *argv(])
{

char *prefix = " CS";

int number = 107;

// %s (string), %d
(integer), %$f (double)

pri ntf ("You are in
%$s%d\n ", prefix, number);

return 0;

Assignment 0

Assignment 1

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems

By yueqgiao
cheatography.com/yueqiao/

/* Unix

1ls sample s/s erv er fil es/ -
home/ >> home d ir.txt

diff sample s/s erv er fil -
es/ use rs.list home d ir.txt

grep sud o" sample s/s erv -
er fil es/ hom e/m att v/.b -
as h h istory */
int main(int argc, char *argv([])
{
int nlevels = DEFAUL -
T L EVELS;
if (argc > 1) {
nlevels =
atoi(a rgv [1]);
if (nlevels < 0

|| nlevels > 8) {

Not published yet.
Last updated 11th December, 2022.
Page 3 of 8.

long signed max (int bitwidth) {
return ~signe d m in(-

bit width) ;

}

long signed mi n(int bitwidth)

{

return -1L << (bitwidth

- 1)

}

long sat_ad d(long operandl,

long operand2, int bitwidth) {
if (! ((op erandl >>

(bitwidth - 1)) & 1L) &&

!'((ope rand2 >>
(bitwidth - 1)) & 1L) &&

(((ope randl +
operand2) >> (bitwidth - 1)) &
1L)) |

return signed -
~ma x(b itw idth);
}
if (((ope randl >>
(bitwidth - 1)) & 1L) &&

((o perand2 >> (bitwidth
- 1)) & 1L) &&

'(((op erandl +
operand2) >> (bitwidth - 1)) &
1L)) |

return signed -
~mi n(b itw idth);
}
return operandl +
operand2;
}
int to utf 8 (u nsigned short
code p oint, unsigned char
utf8 b ytes[]) {

if (code point <= 0x7f)

utf 8 b ytes[0]
= code p oint;
return 1;
} else 1if (code point <=
0x7ff) {
utf 8 b ytes[0]
= 0xc0; // represents 11000000.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/yueqiao/
https://apollopad.com

Cheatography

Assignment 1 (cont)

utf 8 b ytes[1]
// represents 10000000.
utf 8 b ytes[0]

= 0x80;

|= (code_ point & 0x7c0) >> 6;
// 0x7c0 provides the bit mask
11100000.
utf 8 b ytes[1]
|= code point & 0x3f; // 0x3f
provides the bit mask 00111111.
return 2;
} else {
utf 8 b ytes[0]
// represents 11100000.
utf 8 b ytes[1]
// represents 10000000.
utf 8 b ytes[2]
// represents 10000000.
utf 8 b ytes[0]

= 0xe0;
= 0x80;
= 0x80;
|= (code point & 0x£f000) >> 12;
// 0xf000 provides the bit mask
111100 000 000 0000.

utf 8 b ytes[1]
|= (code_ point & O0xfc0) >> 6;
// 0xfcO provides the bit mask
000011 111 100 0000.

utf 8 b ytes[2]
|= code point & 0x3f; // 0x3f
provides the bit mask 000000 -

000 011 1111.

return 3;

}

#define BIT MASK 3 7L

unsigned long advanc e (u nsigned
long cur gen, unsigned char
ruleset) {

uns igned long next gen

uns igned long neighb -
orhood = 0;

nei ghb orhood =
(cur gen << 1) & BIT MA SK 3;
nex t gen |= (ruleset >>
neighb orhood) & 1L;

for (int 1 = 0; i <=
sizeof (long) * CHAR BIT - 2;
++1) |

nei ghb orhood =

(cur gen >> i) & BIT MA SK 3;

Assignment 1 (cont)

ntf (LI VE_ STR);

} else {

ntf (EM PTY STR);

pri ntf

}

(ll\n ll);

pri -

pri -

Assignment 2

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Assignment 2 (cont)

buf [ma xlen] = '\0';

*p_ input = begin +
maxlen;

return true;
}
int main (int argc, char argv/[],
const char envp[]) {

const char *searc hpath
= get en v_v alu e(envp, " MYP -
ATH ") ;

if (searc hpath == NULL)

sea rchpath =
get en v v alu e(envp, " PAT -
H") ;
}
if (argc == 1) {
char dir[PA TH_ -
MAX] ;
const char
*remaining = search path;
pri ntf ("Di -

rec tories in search path: \n");

while (scan_ -
tok en(&r ema ining, " :", dir,
sizeof (dir))) {
pri -

ntf ("%$s \n", dir);
}
} else {
for (size t i =
1; 1 < argc; ++1i) {
const
char *execu table = argv[i];
char
dir[PA TH MAX];
const
char *remaining = search path;
while

(scan_ tok en(&r ema ining,

" ", dir, sizeof (dir))) {
str cat (dir, " /");
str cat (dir, execut able);

f (acces s(dir, R OK | X OK) ==
0) |

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems

— a no " a 8
nex t_gen |= const char *get env value (const pri ntf ("%$s \n", dir);

((ruleset >> neighb orhood) & char envp[], const char key) {

L) << (1 + 1); int lenKey = strlen - break;

} (key) ;

return next_gen; for (int i = 0; envpl[il }
! I= NULL; ++i) { }
void draw_g ene rat ion (un - }

char* match =

signed long gen) { return 0;

strstr (en vpl[il]l, key):

for (int i = sizeof - 1F (mateh ==

(long) * CHAR BIT - 1; i >= 0; - envpl[i] && * (match + lenKey) ==

_i) { 1_1) {

if ((gen >> 1) & return

iw) match + lenKey + 1;

}

return NULL;
}
bool scan_t oke n(const char
**p input,
const char *delim iters, char
buf[], size t buflen) ({

const clegin =
p_input;

begin += strspn (begin,
delimi ters);

const char* end = begin

+ strcsp n(b egin, delimi ters);

int maxlen = 0;

if (end - begin <= buflen

- 1) {
maxlen = end -
begin;
} else {
maxlen = buflen
= g

}

if (maxlen <= 0) {

*p_ input =
begin;
return false;
}
str ncp y(buf, begin,
maxlen) ;
By yueqgiao Not published yet. Sponsored by ApolloPad.com
cheatography.com/yueqgiao/ Last updated 11th December, 2022. Everyone has a novel in them. Finish
Page 4 of 8. Yours!

https://apollopad.com

http://www.cheatography.com/yueqiao/
https://apollopad.com

Cheatography

char *read line(FILE
*file pointer) {

char* buffer = malloc -
(MI NIM UM SIZE);

ass ert (buffer !=
NULL) ;

size t curSize =
MINIMU M SIZE;

char* curPtr = fgets(-

buffer, curSize, file p oin -

ter) ;
if (curPtr == NULL) {
fre e(b uffer);
return NULL;
}
size t strLen = strlen -
(bu ffer);
while (* (buffer + strlen
- 1) !'= "\n") {

curSize *= 2;
buffer =
reallo c(b uffer, curSize);

ass ert (buffer

!'= NULL) ;

curPtr = buffer
+ strlen;

char* newPtr =
fgets(curPtr, curSize - strlen,

file p oin ter);

if (newPtr ==

NULL) |
*curPtr
= "\o';
break;
} else {
CUERPEE =
newPtr;
}
strlLen +=

strlen (cu rPtr);

}

if (* (buffer + strlLen -
1) == '"\n') {

* (b uffer +

strLen - 1) = "\0';

}

return buffer;
}

void print las t n (FILE

idx = (idx + 1) %

++c nt_ read;
}
if (cnt_read < n) {
idx = 0;
} else {
cnt read = n;
}
line = lines[idx];
size t cnt print = 0;
while (cnt print <
cnt_read) {
pri ntf ("%s -
\n", line);
fre e(l ine);

idx = (idx + 1) %

line = lines|[-

++c nt_ print;

struct Element ({
char* str;
int cnt;

bi

void print wuni g 1 ine s(FILE

*file poi nter) {
size t curSize =
ESTIMATE;

struct Elemexxr =
malloc (si zeo f (s truct
Element) curSize);

ass ert (arr != NULL);

size t cntElement = 0;

char* line = NULL;

while ((line = read 1 -
!= NULL)

ine (fi le poi nter))

{
bool found =
false;
for (size t i =
0; 1 < cntEle ment; ++1) {
if
(strcm p(line, arr[i].str) == 0)

{

++a rr[i].cnt;

CS107 Computer Organization and Systems Cheat Sheet
by yueqiao via cheatography.com/167654/cs/35043/

Assignment 3 Assignment 3 (cont) Assignment 3 (cont)

if (!found)

arr
[cn tEl eme nt].str = line;

arr
[cn tEl eme nt].cnt = 1;

++c
ntE lement;

if
(cntEl ement == curSize) {

curSize += ESTIMATE;

rr = reallo c(arr, sizeof -

(struct Element) * curSize);

ass ert(arr != NULL);

}
for (size t i = 0; 1

cntEle ment; ++1i) {

<

pri ntf ("$7d

%s\n", arr([i].cnt, arr[i].str);

fre e(a rr|[
i].s tr);
}

fre e (arr);

http://www.cheatography.com/
http://www.cheatography.com/yueqiao/
http://www.cheatography.com/yueqiao/cheat-sheets/cs107-computer-organization-and-systems

*file poi nter, int n) { -
char* lines[n]; found = true;

char* line = NULL; -

int idx = 0; fre e(l ine);
size t cnt read = 0; =
while ((line = read 1 - break;
ine (fi le poi nter)) != NULL) }

{
1lin es[idx] =

line;

By yuegiao Not published yet. Sponsored by ApolloPad.com
cheatography.com/yueqgiao/ Last updated 11th December, 2022. Everyone has a novel in them. Finish
Page 5 of 8. Yours!

https://apollopad.com

http://www.cheatography.com/yueqiao/
https://apollopad.com

	CS107 Computer Organization and Systems Cheat Sheet - Page 1
	Unix
	Bits and Bytes
	Pointers and Arrays
	Unix Commands
	Stack Memory and Heap Memory
	Characters and C Strings

	CS107 Computer Organization and Systems Cheat Sheet - Page 2
	Optimi­zationn
	Generics
	Assembly: Control Flow & Function Call
	GDB
	Heap Allocator

	CS107 Computer Organization and Systems Cheat Sheet - Page 3
	Assignment 1
	C Program Example
	Assembly: Arithmetic and Logic
	Assignment 0

	CS107 Computer Organization and Systems Cheat Sheet - Page 4
	Assignment 2

	CS107 Computer Organization and Systems Cheat Sheet - Page 5
	Assignment 3

