

313 Exam 3 Cheat Sheet

by xsgirl99 via cheatography.com/26903/cs/9256/

laws

Zeroth Law: If system x =system y =system z, then system x =system z. (Transitive)

First Law: Internal energy(ΔU) of an isolated system is constant. No heat lost, only transferred.

Second Law: The entropy of any isolated system always increases.

Third Law: The entropy of a system approaches a constant value as the temperature approaches absolute zero.

Cyclic Rule: (dP/dT)v(dT/dV)p(dV/dP)T = -1

D		110	111		۲.
	USI I		11.5	Lu.	ь-

Adiabatic: No transfer of heat or matter

Diathermal: Heat allowed to transfer, no matter transfer. Can transfer energy in the form of work

Enthalpy(ΔH): Amount of heat content used or released in a system at constant pressure

Irreversible: A process that cannot return both the system and the surroundings to their original conditions.

Exam 2

 $\Delta U = ms/Ms \Delta U = mH20/MH20$

Cv, m(H2O) ΔT + ΔTC calorimeter

 $\Delta H^0 = m \text{ salt/Msalt } \Delta H^0 \text{ solution+} m \text{H2O/MH2O}$

Cp,m(H2O) $\Delta T + \Delta TC$ calorimeter

S=k In(W) W=#of states

Efficiency = 1-|qcd|/|qab| < 1

 $\Delta H^{o}rt = \Delta H^{o}298 + \int \Delta C_{p}(T) dT$ from 298 to T

 ΔH combustion = ΔU combustion+ $\Delta (PV)$

For Solids & Liquids: $\Delta H^- = \Delta U$

 $\Delta s=-nRln(Pf/Pi)+\int nCpm/T dT$ for Pi to Pf

 $\Delta s = nRIn(Vf/Vi) + \int nCvm/T dT$ for Vi to Vf

Isolated System: $\Delta S = q_p(1/T_1 - 1/T_2)$

Isothermal, Ideal: $\Delta S=nRln(Vf/Vi)$

 ΔS total= $\Delta S+\Delta S$ surroundings

 $\Delta G=nRT \Sigma xiln(xi) xi$ is mole fraction

 $\Delta G = T\Delta S$ total

Internal Energy (ΔU)	
General	$\Delta U = q + w$
Constant Volume	$\Delta U = C_{\rm V} \Delta T = q_{\rm V}$
Adiabatic, Reversible	$\Delta U = w = n(C_{\text{pm}} - R)\Delta T = nC_{\text{vm}}\Delta T$
Ideal	ΔU =nC $_{V}$ m ΔT

Enthalpy (ΔΗ) (State Fxn)			
General	$\Delta H = \Delta U + \Delta (PV) = \Delta U + nR\Delta T$		
Constant Pressure	ΔΗ= CpΔΤ		
Ideal	$\Delta H = q_{\mathcal{D}}$		
Constant Volume	$\Delta H = nC_{pm}\Delta T + V\Delta P$		
Even More General	dH = (dH/dP)T dT + (dH/dT)P dP		
Liquids & Solids	$(dH/dP)T = V(1-T\beta)$		
Constant Pressure, closed system	ΔH= (Uf+PfVf)- (Ui+PiVi)		
Isobaric	$\Delta H = n \int C_{pm}(T) dT = n C_{pm} \Delta T$		

Exam 2 Materia

 $Sm(T) = Sm(0^ok) + JCpm/T dT(solid 0-Tf) + \Delta Hfus/Tf + JCpm/T dT(liquid -Tf) + \Delta Hfus/Tf + Dpm/T dT(liquid -Tf) + Dpm$

Tf-Tb) $+\Delta H_{\text{vap}}/Tb \int C_{\text{pm}}/T dT(gas Tb-T)$

For Ideal Gases: $\Delta S_m = Rln(Vf/Vi) = -Rln(Pf/Pi)$

 $\Delta G(T_2)/T_2 = \Delta G(T_1)/T_1 + \Delta H(T_1)(1/T_2-1/T_1)$

Max Work: Reversible, adiabatic, isothermal

Hess's Law: Total Enthalpy change is independent of # of steps(path-independent).

 $\Delta A = \Delta U - T \Delta S = \Delta H - nRT (Hemholtz)$

for ΔG^0r only include non-pure substances.

By xsgirl99

cheatography.com/xsgirl99/

Published 25th September, 2016. Last updated 9th December, 2016. Page 1 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com

313 Exam 3 Cheat Sheet by xsgirl99 via cheatography.com/26903/cs/9256/

Eyam :

 $\Delta GR = \Delta G^{\circ}R + RT \ln(QP)$

 $ln(KP) = -\Delta G^{\circ}R/RT$

 $K_{x}=K_{P}(P/P^{\circ})^{-\Delta V}$

 $dA = \gamma d\sigma$ gamma is surface tension

Work = $8pi\gamma r dr$

Force = $8pi\gamma r$

h(capillary rise/depression) = $2\gamma/\rho gr$

 $uB=u^{\circ}B+RTIn(\gamma[B])$ gamma is activity coefficient

 $\Delta G \mathbb{R} = \Delta G^{\circ} \mathbb{R}\text{-}2.303vRT(pH)$

qx = kA(Tsi-Tso)/L

q''x = -k dT/dx = qx/A

 \dot{E} in+ \dot{E} g- \dot{E} out = \dot{E} internal

q12 = $\varepsilon\sigma A(T1^4-T2^4)$ - Heat xchange via radiation b/t 2 surfaces

 $q''s = h(Ts-T\infty)$ - Newton's Law of Cooling

By xsgirl99

cheatography.com/xsgirl99/

Published 25th September, 2016. Last updated 9th December, 2016. Page 2 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com