Cheatography

313 Exam 3 Cheat Sheet by xsgirl99 via cheatography.com/26903/cs/9256/

Laws

Zeroth Law: If system x = system y & system y = system z, then system x = system z. (Transitive)

First Law: Internal energy($\Delta U)$ of an isolated system is constant. No heat lost, only transferred.

Second Law: The entropy of any isolated system always increases.

Third Law: The entropy of a system approaches a constant value as the temperature approaches absolute zero.

Cyclic Rule: $(dP/dT) \vee (dT/dV)_{P}(dV/dP)_{T} = -1$

Definitions

Adiabatic: No transfer of heat or matter

Diathermal: Heat allowed to transfer, no matter transfer. Can transfer energy in the form of work

Enthalpy(ΔH): Amount of heat content used or released in a system at constant pressure

Irreversible: A process that cannot return both the system and the surroundings to their original conditions.

Exam 2

 $\Delta U{=}m{\rm s}/M{\rm s}\;\Delta U{\rm comb}{+}m{\rm H2O}/M{\rm H2O}$

 $Cv,m(H2O)\Delta T + \Delta TC$ calorimeter

 $\Delta H^{o}=m \text{ salt}/M \text{ salt} \Delta H^{o} \text{ solution}+m \text{H2O}/M \text{H2O}$

 $Cp,m(H2O)\Delta T + \Delta TC$ calorimeter

S=k In(W) W=#of states

 $Efficiency = 1 - |q_{Cd}|/|q_{Ab}| < 1$

 ΔH^{o} rt= ΔH^{o} 298+ $\int \Delta C_{p}(T) dT$ from 298 to T

 ΔH combustion = ΔU combustion+ $\Delta(PV)$

For Solids & Liquids: $\Delta H \sim = \Delta U$

 $\Delta s=-nRln(Pf/Pi)+\int nCpm/T dT$ for Pi to Pf

 $\Delta s=nRln(Vf/Vi)+fnCvm/T dT$ for Vi to Vf

Isolated System: $\Delta S=q_p(1/T_1 - 1/T_2)$

Isothermal, Ideal: △S=nRIn(Vf/Vi)

 ΔS total= ΔS + ΔS surroundings

 $\Delta G=nRT \Sigma xiln(xi) xi$ is mole fraction

 $\Delta G = T \Delta S \texttt{total}$

By xsgirl99

cheatography.com/xsgirl99/

Published 25th September, 2016. Last updated 9th December, 2016. Page 1 of 2.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours!

https://apollopad.com

Internal Energy (ΔU)

General	∆U=q+w
Constant Volume	$\Delta U{=}C_{\rm V} \Delta T = q_{\rm V}$
Adiabatic, Reversible	$\Delta U = w = n(Cpm-R)\Delta T = nCvm\Delta T$
Ideal	$\Delta U=nCvm\Delta T$

Enthalpy (Δ H) (State Fxn)	
General	$\Delta H{=}\;\Delta U{+}\Delta (PV)=\Delta U{+}nR\Delta T$
Constant Pressure	$\Delta H = C_{\rm P} \Delta T$
Ideal	$\Delta H = q_{D}$
Constant Volume	$\Delta H=nC_{\text{pm}}\Delta T+V\Delta P$
Even More General	<i>d</i> H= (<i>d</i> H/ <i>d</i> P)⊤ dT + (<i>d</i> H/ <i>d</i> T)₽ dP
Liquids & Solids	(dH/dP) T = V(1-T β)
Constant Pressure, closed system	ΔH=(Uf+PfVf)- (Ui+PiVi)
Isobaric	$\Delta H = n \int C_{pm}(T) dT = n C_{pm} \Delta T$

Exam 2 Materia

For Ideal Gases: $\Delta Sm = Rln(Vf/Vi) = -Rln(Pf/Pi)$

 $\Delta G(T_2)/T_2 = \Delta G(T_1)/T_1 + \Delta H(T_1)(1/T_2 - 1/T_1)$

Max Work: Reversible, adiabatic, isothermal

Hess's Law: Total Enthalpy change is independent of # of steps(pathindependent).

 $\Delta A = \Delta U - T \Delta S = \Delta H - n RT$ (Hemholtz)

for $\Delta G^o{\tt r}$ only include non-pure substances.

Cheatography

313 Exam 3 Cheat Sheet by xsgirl99 via cheatography.com/26903/cs/9256/

Exam 3

 $\Delta G_{\mathbb{R}} = \Delta G^{\circ}_{\mathbb{R}} + RT \ln(Q_{\mathbb{P}})$

 $ln(KP) = -\Delta G^{\circ}R/RT$

 $K_X = K_P(P/P^\circ)^{-\Delta V}$

dA = γ d σ gamma is surface tension

Work = $8pi\gamma r dr$

 $\text{Force}=8\text{pi}\gamma\text{r}$

h(capillary rise/depression) = $2\gamma/\rho$ gr

 $uB=u^{\circ}B+RTIn(\gamma[B])$ gamma is activity coefficient

 $\Delta G_{R} = \Delta G^{\circ}_{R}-2.303vRT(pH)$

qx = kA(Tsi-Tso)/L

q''x = -k dT/dx = qx/A

 \dot{E} in+ \dot{E} g- \dot{E} out = \dot{E} internal

q12 = $\epsilon\sigma A(T_1^4-T_2^4)$ - Heat xchange via radiation b/t 2 surfaces

q"s = $h(Ts-T\infty)$ - Newton's Law of Cooling

By xsgirl99

cheatography.com/xsgirl99/

Published 25th September, 2016. Last updated 9th December, 2016. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com