
Haskell Cheat Sheet
by xonnex via cheatography.com/196187/cs/41216/

Class ConstraintsClass Constraints

Eq – equality types

 Contains types whose values
can be compared for equality
and inequality

 methods: (==), (/=)

Ord – ordered types

 Contains types whose values
are totally ordered

 methods: (<), (<=), (>), (>=),
min, max

Show – showable types

 Contains types whose values
can be converted into strings of
characters

 method show :: a -> String

Num – numeric types

 Contains types whose values
are numeric

 methods: (+), (-), (*), negate,
abs, signum

Integral – integral types

 Contains types that are numeric
but of integral value

 methods: div, mod

Fractional – fractional types

 Contains types that are numeric
but of fractional value

 methods: (/), recip

Predefined FunctionsPredefined Functions

cos

sin

fst first argument

snd second argument

show display (will display
"\246" instead of "ö")

putStrLn IO display (will
display "ö")

import Data.Char

isDigit 'a'

isUpperCase 'a'

Predefined ConstantsPredefined Constants

pi

Pattern MatchingPattern Matching

fstInt :: (Int, Int) -> Int

fstInt (x, y) = x

fstInt (1, 3) 1

sayNumber :: Int -> String ->
String

sayNumber 1 s = "One " ++ s

sayNumber n s = "Many " ++ s
++ "s"

constants like 0, [] or an enum
names like n
wildcard "_" (matches always but
binds no name to the matched
value)
structures like lists (x:xs) or
tuples (a,b)

CommandsCommands

cabal run Runs cabal
project

ghci Open interactive
shell

ghci fileNa‐
me.hs

Open shell and
load file

FunctionsFunctions

data Color = Red | Yellow |
Green deriving (Show)

data ToDo = Stop | Wait | Go
deriving (Show)

atTrafficLight :: Color -> ToDo

atTrafficLight Red = Stop

atTrafficLight Yellow = Wait

atTrafficLight Green = Go

"->" whenever the arrow is
shown, we have ourselves a
function

ghcighci

:r reload file

:q quit

:t var show type of
var

:i + show type of
operator

:{ start multiline

:} end multiline

(var1, var2,
...) :: (Type1,
Type2, ...)

Validates type

{-# OPTION‐
S_GHC -Wall
#-}

Shows info in
case something
is missing

BoolBool

True

False

a && b

a || b

not a

ListsLists

[1,2,3,4]

[(1,2),(3,4)]

ones = 1 : ones

head
[1,2,3]

1

tail
[1,2,3]

[2,3]

init
[1,2,3]

[1,2]

last
[1,2,3]

3

take 2
[1,2,3]

[1,2]

uncons
[1,2,3]

Just (1, [2,3])

map :: (a -> b) -> [a] -> [b]

map
(+1) [1,
2, 3]

[2,3,4]

filter :: (a -> Bool) -> [a] -> [a]

filter
odd [1,
2, 3]

[1,3]

null [] ~> True -- Checks
whether list is empty
(performant)

length
[]

~> 0 -- Checks length
(need to go through
the whole list)

[a,b,c] = a : (b : (c : []))

[] nil

(:) cons operator

stdMatch :: Show a => [a] ->
String

stdMatch [] = "Matched empty
list"

By xonnexxonnex
cheatography.com/xonnex/

Not published yet.
Last updated 7th November, 2023.
Page 1 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/xonnex/
http://www.cheatography.com/xonnex/cheat-sheets/haskell
http://www.cheatography.com/xonnex/
http://crosswordcheats.com

Haskell Cheat Sheet
by xonnex via cheatography.com/196187/cs/41216/

Lists (cont)Lists (cont)

stdMatch (x:xs) = "Matched list
with head " ++ show x

ml :: Show a => [a] -> String

ml [x] = "Matched list with one
element" ++ show x

ml [x,y] = "Matched list with two
elements"

sequence of elements of the
same type
infinite amount of elements
immutable
"++" concat two lists

StringString

reverse "abc" "cba"

['a','b','c'] == "abc" True

"Foo" ++ " " ++ "‐
Bar"

"Foo Bar"

String = [Char]

CharsChars

'a', ,

' '

'\n'

Where BindingsWhere Bindings

amountToText :: Int -> String

amountToText amount

 | amount >= high = "Many"

 | amount >= mid = "Medium"

 | otherwise = "Low"

 where

 high = 10

 mid = 5

Conditional ExpressionsConditional Expressions

if a == b

 then "Eq"

 else "Not Eq"

Where BindingsWhere Bindings

amountToText :: Int -> String

amountToText amount

 | amount >= high = "Many"

 | amount >= mid = "Medium"

 | otherwise = "Low"

 where

 high = 10

 mid = 5

GuardsGuards

abs :: (Num a, Ord a) => a -> a

abs n

 | n < 0 = -n

 | otherwise = n

Function CompositionFunction Composition

g . f = \x -> g (f x)

Lambda ExpressionsLambda Expressions

\x -> x + 1

\p q -> e same as \p -> \q -> e

Let BindingsLet Bindings

cylinder :: Float -> Float -> Float

cylinder r h =

 let sideArea = 2 pi r * h
 topArea = pi * r ^ 2

 in 2 * topArea + sideArea

DoubleDouble

Floating Point Number 64 bit

Case ExpressionsCase Expressions

case expression of

 pattern -> result

 pattern -> result

describeList :: [a] -> String

describeList xs = "The list is " ++
case xs of

 [] -> "empty."

 [x] -> "a singleton list."

 xs -> "a longer list."

IntegerInteger

maxBound
:: Int

max int

45 literals will always
default to Integer

long in Java 2^64

Record TypesRecord Types

data Person = MkPerson { name
:: String, age :: Int } deriving
(Show)

me = MkPerson "XonneX" 99

name me "XonneX"

age me 99

Type SynonymsType Synonyms

type Coord = (Int, Int)

xCoord :: Coord -> Int

xCoord (x, y) = x

time :: (Int, Int)

time = (23, 59)

Type Synonyms (cont)Type Synonyms (cont)

xCoord time compiles

The keyword type can be used
to introduce a new name (a
synonym) for an existing type.
This does not create a new type,
only a new name!

TuplesTuples

(False, 8, "Hallo") :: (Bool, Int,
String)

((True, 8), (12, "Hallo")) :: ((True,
8), (12, "Hallo"))

EnumerationsEnumerations

data Color = Red | Yellow |
Green

show
Green

Would fail as no
toString method is not
implemented

data Color = Red | Yellow |
Green deriving (Show)

show
Green

Displays "Green" as
toString method is
implemented

OperatorsOperators

(|+|) :: Int -> Int -> Int

a |+| b = abs a + abs b

1 |+| (-2) 3

By xonnexxonnex
cheatography.com/xonnex/

Not published yet.
Last updated 7th November, 2023.
Page 2 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/xonnex/
http://www.cheatography.com/xonnex/cheat-sheets/haskell
http://www.cheatography.com/xonnex/
http://crosswordcheats.com

	Haskell Cheat Sheet - Page 1
	Class Constraints
	Predefined Functions
	Functions
	Lists
	ghci
	Predefined Constants
	Pattern Matching
	Bool
	Commands

	Haskell Cheat Sheet - Page 2
	Conditional Expressions
	Double
	Case Expressions
	Where Bindings
	Tuples
	Enumerations
	String
	Guards
	Integer
	Chars
	Function Composition
	Record Types
	Lambda Expressions
	Operators
	Where Bindings
	Let Bindings
	Type Synonyms

