
Haskell Cheat Sheet
by xonnex via cheatography.com/196187/cs/41216/

Class Constr​aints

Eq – equality types

 Contains types whose values
can be compared for equality
and inequality

 methods: (==), (/=)

Ord – ordered types

 Contains types whose values
are totally ordered

 methods: (<), (<=), (>), (>=),
min, max

Show – showable types

 Contains types whose values
can be converted into strings of
characters

 method show :: a -> String

Num – numeric types

 Contains types whose values
are numeric

 methods: (+), (-), (*), negate,
abs, signum

Integral – integral types

 Contains types that are numeric
but of integral value

 methods: div, mod

Fractional – fractional types

 Contains types that are numeric
but of fractional value

 methods: (/), recip

Predefined Functions

cos

sin

fst first argument

snd second argument

show display (will display
"​\24​6" instead of "​ö")

putStrLn IO display (will
display "​ö")

import Data.Char

isDigit 'a'

isUppe​rCase 'a'

Predefined Constants

pi

Pattern Matching

fstInt :: (Int, Int) -> Int

fstInt (x, y) = x

fstInt (1, 3) 1

sayNumber :: Int -> String ->
String

sayNumber 1 s = "One " ++ s

sayNumber n s = "Many " ++ s
++ "​s"

constants like 0, [] or an enum
names like n
wildcard "​_" (matches always but
binds no name to the matched
value)
structures like lists (x:xs) or
tuples (a,b)

Commands

cabal run Runs cabal
project

ghci Open intera​ctive
shell

ghci fileNa​‐
me.hs

Open shell and
load file

Functions

data Color = Red | Yellow |
Green deriving (Show)

data ToDo = Stop | Wait | Go
deriving (Show)

atTraf​fic​Light :: Color -> ToDo

atTraf​fic​Light Red = Stop

atTraf​fic​Light Yellow = Wait

atTraf​fic​Light Green = Go

"​->" whenever the arrow is
shown, we have ourselves a
function

ghci

:r reload file

:q quit

:t var show type of
var

:i + show type of
operator

:{ start multiline

:} end multiline

(var1, var2,
...) :: (Type1,
Type2, ...)

Validates type

{-# OPTION​‐
S_GHC -Wall
#-}

Shows info in
case something
is missing

Bool

True

False

a && b

a || b

not a

Lists

[1,2,3,4]

[(1,2)​,(3,4)]

ones = 1 : ones

head
[1,2,3]

1

tail
[1,2,3]

[2,3]

init
[1,2,3]

[1,2]

last
[1,2,3]

3

take 2
[1,2,3]

[1,2]

uncons
[1,2,3]

Just (1, [2,3])

map :: (a -> b) -> [a] -> [b]

map
(+1) [1,
2, 3]

[2,3,4]

filter :: (a -> Bool) -> [a] -> [a]

filter
odd [1,
2, 3]

[1,3]

null [] ~> True -- Checks
whether list is empty
(perfo​rmant)

length
[]

~> 0 -- Checks length
(need to go through
the whole list)

[a,b,c] = a : (b : (c : []))

[] nil

(:) cons operator

stdMatch :: Show a => [a] ->
String

stdMatch [] = "​Matched empty
list"

By xonnex
cheatography.com/xonnex/

Not published yet.
Last updated 7th November, 2023.
Page 1 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/xonnex/
http://www.cheatography.com/xonnex/cheat-sheets/haskell
http://www.cheatography.com/xonnex/
http://crosswordcheats.com

Haskell Cheat Sheet
by xonnex via cheatography.com/196187/cs/41216/

Lists (cont)

stdMatch (x:xs) = "​Matched list
with head " ++ show x

ml :: Show a => [a] -> String

ml [x] = "​Matched list with one
elemen​t" ++ show x

ml [x,y] = "​Matched list with two
elemen​ts"

sequence of elements of the
same type
infinite amount of elements
immutable
"​++" concat two lists

String

reverse "​abc​" "​cba​"

['a','​b','c'] == "​abc​" True

"​Foo​" ++ " " ++ "​‐
Bar​"

"Foo Bar"

String = [Char]

Chars

'a', ,

' '

'\n'

Where Bindings

amount​ToText :: Int -> String

amount​ToText amount

 | amount >= high = "​Man​y"

 | amount >= mid = "​Med​ium​"

 | otherwise = "​Low​"

 where

 high = 10

 mid = 5

Condit​ional Expres​sions

if a == b

 then "​Eq"

 else "Not Eq"

Where Bindings

amount​ToText :: Int -> String

amount​ToText amount

 | amount >= high = "​Man​y"

 | amount >= mid = "​Med​ium​"

 | otherwise = "​Low​"

 where

 high = 10

 mid = 5

Guards

abs :: (Num a, Ord a) => a -> a

abs n

 | n < 0 = -n

 | otherwise = n

Function Compos​ition

g . f = \x -> g (f x)

Lambda Expres​sions

\x -> x + 1

\p q -> e same as \p -> \q -> e

Let Bindings

cylinder :: Float -> Float -> Float

cylinder r h =

 let sideArea = 2 pi r * h
 topArea = pi * r ^ 2

 in 2 * topArea + sideArea

Double

Floating Point Number 64 bit

Case Expres​sions

case expression of

 pattern -> result

 pattern -> result

descri​beList :: [a] -> String

descri​beList xs = "The list is " ++
case xs of

 [] -> "​emp​ty."​

 [x] -> "a singleton list."

 xs -> "a longer list."

Integer

maxBound
:: Int

max int

45 literals will always
default to Integer

long in Java 2^64

Record Types

data Person = MkPerson { name
:: String, age :: Int } deriving
(Show)

me = MkPerson "​Xon​neX​" 99

name me "​Xon​neX​"

age me 99

Type Synonyms

type Coord = (Int, Int)

xCoord :: Coord -> Int

xCoord (x, y) = x

time :: (Int, Int)

time = (23, 59)

Type Synonyms (cont)

xCoord time compiles

The keyword type can be used
to introduce a new name (a
synonym) for an existing type.
This does not create a new type,
only a new name!

Tuples

(False, 8, "​Hal​lo") :: (Bool, Int,
String)

((True, 8), (12, "​Hal​lo")) :: ((True,
8), (12, "​Hal​lo"))

Enumer​ations

data Color = Red | Yellow |
Green

show
Green

Would fail as no
toString method is not
implem​ented

data Color = Red | Yellow |
Green deriving (Show)

show
Green

Displays "​Gre​en" as
toString method is
implem​ented

Operators

(|+|) :: Int -> Int -> Int

a |+| b = abs a + abs b

1 |+| (-2) 3

By xonnex
cheatography.com/xonnex/

Not published yet.
Last updated 7th November, 2023.
Page 2 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/xonnex/
http://www.cheatography.com/xonnex/cheat-sheets/haskell
http://www.cheatography.com/xonnex/
http://crosswordcheats.com

	Haskell Cheat Sheet - Page 1
	Class Constr­aints
	Predefined Functions
	Functions
	Lists
	ghci
	Predefined Constants
	Pattern Matching
	Bool
	Commands

	Haskell Cheat Sheet - Page 2
	Condit­ional Expres­sions
	Double
	Case Expres­sions
	Where Bindings
	Tuples
	Enumer­ations
	String
	Guards
	Integer
	Chars
	Function Compos­ition
	Record Types
	Lambda Expres­sions
	Operators
	Where Bindings
	Let Bindings
	Type Synonyms

