
Master Javascript Cheat Sheet
by xenaxon via cheatography.com/196679/cs/41372/

Data TypesData Types

String a series of characters

Number any numeric value up to 16 in length (check
Number.MAX_SAFE_INTEGER)

Boolean either true or false

Object data structure of key-value pairs or class instances.
Arrays are also objects in JS

Undefined variable value not defined, type not defined

Null used mainly for objects for referring absence of any
object value and if any function or variable returns null,
then we can infer that the object could not be created

Symbol a data type that is a unique value. usage: Symbol() or
Symbol(label) or Symbol.for(label). Youtube Explained:
4J5hnOCj69w

Bigint used to store big integer values that are too big to be
represented by Number type

VariablesVariables

var - global scoped or function scoped
- it is hoisted
-can be used without being declared
-it also binds to 'this'

var
redecl
aring

Because var is function scoped and not Block scoped,
redeclaring a variable inside a block will also redeclare the
variable outside the block

let - block scoped variable

const - block scoped variable
-cannot be reassigned.
-must be assigned a value
- const doesnt mean it's a constant value. It is a constant
REFERENCE to a value.
-you can't reassign it a different value/object/array, but you
can change it's object or array elements and properties
Other than that, it behaves same as let

Variables (cont)Variables (cont)

let and
const

let and const have block scope.
let and const can not be redeclared.
let and const must be declared before use.
let and const does not bind to this.
let and const are not hoisted.

var VS
let

- Variables declared by let are only available inside the
block where they're defined.
- Variables declared by var are available throughout the
function in which they're declared.
- Variables declared with var can be redeclared, ones
with let canoot. they will give an error

global
VS
local

Global and local variables with the same name are
different variables. Modifying one, does not modify the
other.

Variable
Lifetime

- While identifier is reachable, it will not be deleted from
memory.
- Global variables live until the page is discarded / tab
closed / page changed / etc
- Local variables are deleted when the function is
completed
- In CLOSURES, as long as the variable is still access‐
ible, it will not be removed.

FunctionsFunctions

Function
Declaration

function funcA (parameters) { statements; return
value)
If it starts with function keyword, it's a function
declaration

Function
Expression

const funcA = function (parameters) { statements;
return value)
If name of function is omitted, then it's a function
expression

By xenaxonxenaxon
cheatography.com/xenaxon/

Not published yet.
Last updated 3rd June, 2024.
Page 1 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/xenaxon/
http://www.cheatography.com/xenaxon/cheat-sheets/master-javascript
http://www.cheatography.com/xenaxon/
https://apollopad.com

Master Javascript Cheat Sheet
by xenaxon via cheatography.com/196679/cs/41372/

Functions (cont)Functions (cont)

Anonymous
Function

(function () { ... });
An anonymous function is a function without a name.
So the function inside a function expression is also
an anonymous function

Arrow
Function

const arrowFunc = (params) => statement
It is a Shorthand for function expression.
- Single Line arrow Functions can ommit return
statement and just return the result of the statement
directly!

Arrow
Function
(with
multiple
statements
body)

const arrowFunc = (params) => {statement; return
value}
- If the anonymous function has multiple statements,
it needs to be surrounded by {} and must contain a
return statement in order to return a value

Self
Invoking
Function

(function(params){
body
})()

Closure const add = (function () {
let counter = 0;
return function () {
counter += 1;
return counter}
})();
- It makes it possible for a function to have "private"
variables. The counter is protected by the scope of
the anonymous function, and can only be changed
using the add function.

Functions (cont)Functions (cont)

() Operator The () Operator invokes (calls) a function. The
function parameters are passed between the
round braces.
Example myFunc() or myFunc(param1, param2,
etc...)

let myVar =
myFunc vs
myVar =
myFunc()

myFunc reffers to the function Object
myFunc() reffers to the function result after
invoking it

let totalFields =
function
(rows=10,
columns=2) {
return rows*c‐
olumns }

If we invoke totalFields, without parameters we
will get back 20, because default values will be
used

Function
'arguments'
variable

Every function has a built in variable arguments
that will contain an array of all the parameters
passed upon invocation.
- This can be used inside the function to create
custom logic for parameters missing or of
different value than expected, or can be used to
permit the function to receive an unknown number
of parameters.
- $arguments can be iterated like a normal array
- If arguments are not passed, then the
arguments array will be empty

Function
combined
output func(a)
(b)

fun(a)(b) will return a combined output by using
both the parameter in the parent function and the
parameter in the child function.

By xenaxonxenaxon
cheatography.com/xenaxon/

Not published yet.
Last updated 3rd June, 2024.
Page 2 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/xenaxon/
http://www.cheatography.com/xenaxon/cheat-sheets/master-javascript
http://www.cheatography.com/xenaxon/
https://apollopad.com

Master Javascript Cheat Sheet
by xenaxon via cheatography.com/196679/cs/41372/

Native Array MethodsNative Array Methods

Array Creation MethodsArray Creation Methods

Array.from() Creates a new array instance from an array-like or
iterable object.

Array.isA‐
rray()

Returns true if the argument is an array.

Array.of() Creates a new array instance with a variable number
of arguments, regardless of number or type of the
arguments.

Array Mutator MethodsArray Mutator Methods

Array.pro‐
totype.co‐
pyWithin()

Copies part of an array to another location in the
same array.

Array.pro‐
totype.fill()

Fills all the elements of an array from a start index to
an end index with a static value.

Array.pro‐
totype.pop()

Removes the last element from an array and returns
that element.

Array.pro‐
tot‐
ype.push()

Adds one or more elements to the end of an array and
returns the new length of the array.

Array.pro‐
totype.re‐
verse()

Reverses the order of the elements of an array in
place.

Array.pro‐
totype.sh‐
ift()

Removes the first element from an array and returns
that element.

Array.pro‐
totype.sort()

Sorts the elements of an array in place and returns
the array.

Array.pro‐
totype.sp‐
lice()

Adds and/or removes elements from an array.

Array.pro‐
totype.un‐
shift()

Adds one or more elements to the beginning of an
array and returns the new length of the array.

Accessor MethodsAccessor Methods

Array.pro‐
totype.co‐
ncat()

Merges two or more arrays.

Native Array Methods (cont)Native Array Methods (cont)

Array.protot‐
ype.includes()

Determines whether an array includes a certain
value among its entries.

Array.protot‐
ype.indexOf()

Returns the first index at which a given element
can be found in the array.

Array.protot‐
ype.join()

Joins all elements of an array into a string.

Array.protot‐
ype.lastInde‐
xOf()

Returns the last index at which a given element
can be found in the array.

Array.protot‐
ype.slice()

Returns a shallow copy of a portion of an array
into a new array object.

Array.protot‐
ype.toString()

Returns a string representing the array and its
elements.

Array.protot‐
ype.toLocale‐
String()

Returns a localized string representing the array
and its elements.

Iteration MethodsIteration Methods

Array.protot‐
ype.entries()

Returns a new array iterator object that contains
the key/value pairs for each index in the array.

Array.protot‐
ype.every()

Tests whether all elements in the array pass the
test implemented by the provided function.

Array.protot‐
ype.filter()

Creates a new array with all elements that pass
the test implemented by the provided function.

Array.protot‐
ype.find()

Returns the value of the first element in the array
that satisfies the provided testing function.

Array.protot‐
ype.findIndex()

Returns the index of the first element in the array
that satisfies the provided testing function.

Array.protot‐
ype.forEach()

Executes a provided function once for each array
element.

By xenaxonxenaxon
cheatography.com/xenaxon/

Not published yet.
Last updated 3rd June, 2024.
Page 3 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/xenaxon/
http://www.cheatography.com/xenaxon/cheat-sheets/master-javascript
http://www.cheatography.com/xenaxon/
https://apollopad.com

Master Javascript Cheat Sheet
by xenaxon via cheatography.com/196679/cs/41372/

Native Array Methods (cont)Native Array Methods (cont)

Array.protot‐
ype.keys()

Returns a new array iterator that contains the keys
for each index in the array.

Array.protot‐
ype.map()

Creates a new array with the results of calling a
provided function on every element in the calling
array.

Array.protot‐
ype.reduce()

Executes a reducer function on each element of the
array, resulting in a single output value.

Array.protot‐
ype.reduc‐
eRight()

Executes a reducer function on each element of the
array, from right to left, resulting in a single output
value.

Array.protot‐
ype.some()

Tests whether at least one element in the array
passes the test implemented by the provided
function.

Array.protot‐
ype.values()

Returns a new array iterator object that contains the
values for each index in the array.

Array.protot‐
ype.flat()

Creates a new array with all sub-array elements
concatenated into it recursively up to the specified
depth.

Array.protot‐
ype.flatMap()

Maps each element using a mapping function, then
flattens the result into a new array.

Array.protot‐
ype[@@ite‐
rator]()

Returns the default iterator for an array, which is the
same as the values() method.

Arithmetic & Assignment OperatorsArithmetic & Assignment Operators

+ Addition

x + y
(numbers)

Adds x and y together and returns the sum
x and y are called Operands and + is called
Operator

x + y (strings) Concatenation Operator (joins two strings into one)

Arithmetic & Assignment Operators (cont)Arithmetic & Assignment Operators (cont)

x+y
(string +
number)

Using the + operator with strings and numbers at same
time will result in string concatenation.
Example: "Hello"+5 = "Hello5"{{nl}-In an operation, if
multiple number operands preceed a string, the numbers
will be added together until the js interpreter reaches the
string, then it concatenates the sum with the string.
Example: 16 + 4 + "Volvo" = "20Volvo"

- Subtraction

* Multiplication

** Exponentiation (raise to power) Ex: 2**4

/ Division

% Modulus (division remainder) ex: 10%4=2 (10/4=2.5,
(0.5*4 is remainder) so whatever is not a full number is
added, and the sum is what is called "remainder")

++ Increment
++x will add 1 and return x
x++ will return x and then add 1 to it
Example: let x = 0; let count = x++ will set count to 0 and
x to 1.

-- Decrement
- same behavior as ++x and x++ subtracts instead.

= Assignment Operator

x+=y Shorthand for: x = x + y (same for all other operators)

Comparison OperatorsComparison Operators

== equal to

=== equal value and equal type

!= not equal

!== not equal value or not equal type

> greater than

< less than

>= greater than or equal to

By xenaxonxenaxon
cheatography.com/xenaxon/

Not published yet.
Last updated 3rd June, 2024.
Page 4 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/xenaxon/
http://www.cheatography.com/xenaxon/cheat-sheets/master-javascript
http://www.cheatography.com/xenaxon/
https://apollopad.com

Master Javascript Cheat Sheet
by xenaxon via cheatography.com/196679/cs/41372/

Comparison Operators (cont)Comparison Operators (cont)

<= less than or equal to

? ternary operator

Logical OperatorsLogical Operators

&& logical and

|| logical or

! logical not

TODO ADD LOGICAL ASSIGNMENT OPERATORS
https://www.w3schools.com/js/js_assignment.asp

The Logical Operators are used in logical statements to test multiple
conditions alternatively, simultaneously or to negate a condition.
Example:
if (1<5 && 6<10) console.log(true)
if (!(6<5)) console.log(true)

Negation operator must be used in combination with round braces
over the expression which needs to be negated. Otherwise for
example: (!0<5) will test if 0 is not true. not if 0<5 is not true.

Bitwise OperatorsBitwise Operators

TODO: I need to add this later

ObjectsObjects

Key Value
Pairs

Objects are key: value pairs that can have:
- any valid value as key
- can contain any data type as value

Properties
&
Methods

Objects can contain:
-properties (variables,constants)
-methods (local functions, stored in properties as well,
as function definitions)

Classes
(ES6)

- Classes where introduced in ECMAScript2015 (ES6)
- Objects can be instances of a class

Arrays In Javascript, arrays are not a primitive data type.
Arrays are Objects as well with index based key:value
pairs.

Associ‐
ative
Arrays

Objects can be used as Associative Arrays, by using
key value pairs and accessing them using the object‐
Name["key"] syntax

Objects (cont)Objects (cont)

Built-In
Objects

Javascript has several Built-In Objects including:
- Date
-JSON
-Math
- and other (check: https://developer.mozilla.org/en-US/‐
docs/Web/JavaScript/Reference/Global_Objects)

Object
Property
Access

Object Properties can be accessed in 2 ways:
- objectName["propertyName"]
objectName.propertyName
- objectName["propertyName"] by this way we can
access properties with STRING key names. as opposed
to using "." (dot) with which we can only access
properties with keys that have valid variable names. As
said above, this way we can use objects as associative
arrays and even more complex, multidimensional arrays
or combinations of arrays/objects on multiple dimensions.

this This is a keyword in javascript which refers to a specific
object depending on the context in which it is used. More
on this in the section dedicated to this.

thisthis

this In JavaScript, the this keyword refers to an
object.

Inside Object
Method

In an object method, this refers to the object.

Inside Function In a function, this refers to the global object.

In Function (Strict
Mode)

In a function, in strict mode, this is undefined.

Inside Event
Handler

In an event, this refers to the element that
received the event.

By xenaxonxenaxon
cheatography.com/xenaxon/

Not published yet.
Last updated 3rd June, 2024.
Page 5 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/xenaxon/
http://www.cheatography.com/xenaxon/cheat-sheets/master-javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects)
http://www.cheatography.com/xenaxon/
https://apollopad.com

Master Javascript Cheat Sheet
by xenaxon via cheatography.com/196679/cs/41372/

this (cont)this (cont)

Special
Object
Methods

Methods like call(), apply(), and bind() can refer this to
any object.
Example: person1.fullName.call(person2); will call
fullName as if we did person2.fullName with the
function definition in person1

This
Immutable

This is not a variable, it is a keyword that refers to an
object. This cannot be changed or reassigned

Global
this

When used alone, this refers to the global object.
-In a browser window the global object is [object
Window]:

By xenaxonxenaxon
cheatography.com/xenaxon/

Not published yet.
Last updated 3rd June, 2024.
Page 6 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/xenaxon/
http://www.cheatography.com/xenaxon/cheat-sheets/master-javascript
http://www.cheatography.com/xenaxon/
https://apollopad.com

	Master Javascript Cheat Sheet - Page 1
	Data Types
	Variables
	Functions

	Master Javascript Cheat Sheet - Page 2
	Master Javascript Cheat Sheet - Page 3
	Native Array Methods

	Master Javascript Cheat Sheet - Page 4
	Arithmetic & Assignment Operators
	Comparison Operators

	Master Javascript Cheat Sheet - Page 5
	Logical Operators
	this
	Bitwise Operators
	Objects

	Master Javascript Cheat Sheet - Page 6

