
r part6.1 Cheat Sheet
by Niki (worlddoit) via cheatography.com/170195/cs/36504/

IntroductionIntroduction

R is not a fully functional programming
language because its functions are not
pure, however it allows for a lot of functional
programming by means of higher-order-fu‐
nctions
Higher-order-functions:Higher-order-functions:
 Functions: take vectors as input and
return vectors as output
 Functionals: take functions (and vectors)
as input and return vectors as output. They
allow to generalize and reapply techniques
in data analysis to any number of inputs
 Function Factories: take vectors as input
and return functions as output. These are
used to create functions
 Function Operators: take functions as
input and return functions as output. They
are used to modify the behavior of functions

(**Basics)

FunctionalsFunctionals

A functional is a function that takes
functions as input and returns vectors as
output.
integrate(cos, 0, pi)
4.922505e-17 with absolute error
< 2.2e-14
They are a common alternative to for loops.
The basic syntax is map(.x, .f, ...)
where
.x can be a list or any atomic vector
.f is a function that will be applied to each
element of .x.
The code of map is very simple:
simple_map <- function(x, f,
...) {
out <- vector("list", length(x))
for (i in seq_along(x)) {

Functionals (cont)Functionals (cont)

out[[i]] <- f(x[[i]], ...) }
out}
In purrr there is a special syntax for
anonymous functions
> purrr::map_dbl(mtcars,
function(x) length(unique(x)))
is similar to
> purrr::map_dbl(mtcars, ∼
length(unique(.x)))
The map extended family and friends is
quite large:
details.
If all you want is to substitute the for loop,
than the base
functionals of the apply family might be a
better choice.
> x <- lapply(1:100, sqrt)
> apply(mtcars, 2, mean) #margin
= 1 by row, 2 by col
If you can substitute the for loop with
vectorization no need to
use functionals.

(**Basics)

Functionals - Time ExampleFunctionals - Time Example

> (benchmap<-bench::mark(
+ forloop = { x <-
vector("list",100)
+ for(i in seq_along(100))
x[[i]]<-sqrt(i)},
+ lapp = {x <- lapply(1:100,
sqrt)},
+ mappurrr = { x <-
purrr::map(1:100,sqrt)},
+ check = F
+))
A tibble: 3 x 13
expression min median itr/sec

Functionals - Time Example (cont)Functionals - Time Example (cont)

<bch:expr> <bch:tm> <bch:tm>
<dbl>
1 forloop 1.44ms 1.57ms 580.
2 lapp 34.64us 36.47us 25570.
3 mappurrr 176.5us 188.17us
5054.

(***Advanced)

Functionals - Time Example photoFunctionals - Time Example photo

(***Advanced)

The apply familyThe apply family

 apply(X, MARGIN, FUN, ...)
returns a vector or array or list of values
obtained by applying a function to margins
of an array or matrix.
apply(mat, 1, sum)
 lapply returns a list, each element of

which is the result of
applying a function to the corresponding
element.
lapply(x, mean)
 rapply() is a recursive version of
lapply() with flexibility in
how the result is structured.
> rapply(x, sqrt, how = "list")
> rapply(x, sqrt, how =
"unlist")

By NikiNiki (worlddoit)
cheatography.com/worlddoit/

Not published yet.
Last updated 21st January, 2023.
Page 1 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/worlddoit/
http://www.cheatography.com/worlddoit/cheat-sheets/r-part6-1
https://adv-r.hadley.nz/functionals.html
https://cheatography.com/uploads/worlddoit_1673626969_%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202023-01-13%20%D0%B2%2017.21.09.png
http://www.cheatography.com/worlddoit/
https://readable.com

r part6.1 Cheat Sheet
by Niki (worlddoit) via cheatography.com/170195/cs/36504/

The apply family (cont)The apply family (cont)

 sapply() is a user-friendly version and
wrapper of lapply() by
default returning a vector.
> sapply(1:5,sqrt)
 vapply is similar to sapply, but has a

pre-specified type of
return value, so it can be safer (and
sometimes faster) to use.
> vapply(1:5, sqrt, numeric(1))
 mapply() is a multivariate version of
sapply() that applies a
function to all first (then second, third, and
so on) elements of
its arguments. Arguments are recycled if
necessary.
> mapply(rep, 1:2, 2:1)
 tapply() applies a function to each

(non-empty) group of
values given by a unique combination of the
levels of certain
factors.
> with(dat, tapply(age, gender,
mean))
This could have also written as:
> dat %$% tapply(age, gender,
mean)
%$% exposes the contents of the left-hand
side object to the expression on the right.

(**Basics)

Time Performance of the differentTime Performance of the different
approachesapproaches

Friends of mapFriends of map

 The modify friend of map
The purrr::modify() function tackles
transformations that preserve the type input
in the output.
> modify(df, ∼ .x * 2)
Things are not modified in place but new
objects are created
 The walk friend of map

The purrr::walk() function tackles
transformations that do not require to store
the output but are focused only on side-
effects
 The imap friend of map

The purrr::imap() function and friends
essentially mimic ways of looping:
> imap(x, ∼ paste0("Label: ",
.y, " Value: ", .x))
> imap_chr(x, ∼ paste0("Label:
", .y, " Value: ", .x))

Predicate functionalsPredicate functionals

Predicate functionsPredicate functions return TRUE or FALSE.
For instance, the testing functions is .x().
Predicate functionals apply a predicate to
the elements of a vector
> x<-list(1:2, c("a","b"),
c(TRUE, FALSE))
> some(x, is.logical)
[1] TRUE
> every(x, is.vector)
[1] TRUE
> detect(x, is.logical);
detect_index(x, is.logical)
[1] TRUE FALSE
[1] 3
> keep(x, is.character)
[[1]]
[1] "a" "b"
> discard(x, is.integer)
[[1]] [[2]]
[1] "a" "b" [1] TRUE FALSE

(**Basics)

Function FactoriesFunction Factories

Functions that make functions.
> log10
function (x) .Primitive("log10")
> changelog <- function(b) {
+ function(x) {
+ log(x)/log(b) }}
log10 <- changelog(10)
> log10(10)
[1] 1
> log10
function(x) {

By NikiNiki (worlddoit)
cheatography.com/worlddoit/

Not published yet.
Last updated 21st January, 2023.
Page 2 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/worlddoit/
http://www.cheatography.com/worlddoit/cheat-sheets/r-part6-1
https://cheatography.com/uploads/worlddoit_1673637450_%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202023-01-13%20%D0%B2%2020.16.24.png
http://www.cheatography.com/worlddoit/
https://readable.com

r part6.1 Cheat Sheet
by Niki (worlddoit) via cheatography.com/170195/cs/36504/

Function Factories (cont)Function Factories (cont)

log(x)/log(b)}
<environment:
0x000000000e46a9e8> #notice the
environment
The enclosing environment of the log10 is
the execution environments of the
changelog function when log10 was
defined by assignment.
There is however a ‘bug’ due to lazy
evaluation so it is better to always force the
function parameter.
> changelog <- function(b) {
+ force(b)
+ function(x) {log(x)/log(b)}
+ }
You can combine factories with functionals
> names <- list(log2 = 2,
+ log3 = 3,
+ log10 = 10)
> (logs <- purrr::map(names,
changelog))
$log2
function(x) {log(x)/log(b)}
<bytecode: 0x000000000dbc6b98>
<environment:
0x000000000e03dc20>
> logs$log2(2)
[1] 1
> logs$log10(10)
[1] 1
> logs$log3(3)
[1] 1
You can use factories to pass different
arguments according to your needs to other
functions.
> n <- 100; sd <- c(1, 5, 15)
> df <- data.frame(x =
rnorm(3*n, sd = sd), sd =
rep(sd, n))
> histograms<-ggplot(df, aes(x))
+
+ geom_histogram(binwidth = 2) +
+ facet_wrap(∼ sd, scales =
"free_x") +

Function Factories (cont)Function Factories (cont)

+ labs(x = NULL)
> jpeg("histograms.jpeg")
> plot(histograms)
> dev.off()
null device
The code above creates binwidth facets
in which the is the same, this is not ideal to
compare the different histograms.
Output 1Output 1
we can create a variable bin width
> binwidth_bins <- function(n) {
+ force(n)
+ function(x) {
+ (max(x) - min(x)) / n
+ }
+ }
and then we run a new groups of
histograms
> histograms2<-ggplot(df,
aes(x)) +
+ geom_histogram(binwidth =
binwidth_bins(20)) +
+ facet_wrap(∼ sd, scales =
"free_x") +
+ labs(x = NULL)
> jpeg("histograms2.jpeg")
> plot(histograms2)
> dev.off()
null device
Now the binwidth varies and keeps
constant the number of observations in
each bin
Output 2Output 2

(**Basics)

Output 1Output 1

Output 2Output 2

Function OperatorsFunction Operators

Functions that take functions as arguments
and return other functions. They wrap a
function and somehow extend its behavior
without modifying the function output
(decorator).
> log(10)
[1] 2.302585
> log("a")
Error in log("a") : non-numeric
argument to mathematical
function
> safe_log <- purrr::safely(log)
> safe_log
function (...)
capture_error(.f(...),
otherwise, quiet)
<bytecode: 0x000000001b790a88>
<environment:
0x000000000ed506f0>
> safe_log(10)
$result
[1] 2.302585
$error

By NikiNiki (worlddoit)
cheatography.com/worlddoit/

Not published yet.
Last updated 21st January, 2023.
Page 3 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/worlddoit/
http://www.cheatography.com/worlddoit/cheat-sheets/r-part6-1
https://cheatography.com/uploads/worlddoit_1674264626_%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202023-01-21%20%D0%B2%202.22.35.png
https://cheatography.com/uploads/worlddoit_1674264674_%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202023-01-21%20%D0%B2%202.28.29.png
http://www.cheatography.com/worlddoit/
https://readable.com

r part6.1 Cheat Sheet
by Niki (worlddoit) via cheatography.com/170195/cs/36504/

Function Operators (cont)Function Operators (cont)

NULL
> safe_log("a")
$result
NULL
$error
<simpleError in
.Primitive("log")(x, base):
non-numeric argument to
mathematical function>
safely() is also useful in catching errors
in the applications of functionals like map.
> out <- map(x, safely(sum))
> str(out)
List of 4
$:List of 2
..$ result: int 10
..$ error : NULL
...
$:List of 2
..$ result: NULL
..$ error :List of 2
.. ..$ message: chr "invalid
'type' (character) of argument"
.. ..$ call : language
.Primitive("sum")(..., na.rm =
na.rm)
.. ..- attr(*, "class")= chr
[1:3] "simpleError" "error"
"condition"
...

SummarySummary

resources: 1

By NikiNiki (worlddoit)
cheatography.com/worlddoit/

Not published yet.
Last updated 21st January, 2023.
Page 4 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/worlddoit/
http://www.cheatography.com/worlddoit/cheat-sheets/r-part6-1
https://cheatography.com/uploads/worlddoit_1674265967_%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202023-01-20%20%D0%B2%2011.21.25.png
https://adv-r.hadley.nz/fp.html
http://www.cheatography.com/worlddoit/
https://readable.com

	r part6.1 Cheat Sheet - Page 1
	Introduction
	Functionals - Time Example photo
	Functionals
	The apply family
	Functionals - Time Example

	r part6.1 Cheat Sheet - Page 2
	Time Performance of the different approaches
	Predicate functionals
	Friends of map
	Function Factories

	r part6.1 Cheat Sheet - Page 3
	Output 1
	Output 2
	Function Operators

	r part6.1 Cheat Sheet - Page 4
	Summary

