
r part5 Cheat Sheet
by Niki (worlddoit) via cheatography.com/170195/cs/35988/

Environment 1Environment 1

 The environment is the data structure
that powers scoping.
 Scoping is the process of connecting
names and values.
 An environment binds a set of names to
a set of values. It is essentially a disordered
bag of names.
 Only one environment at the time is
active.
 The active environment is also called the
current environment.
 Upon calling a function, a new enviro‐
nment hosts its execution and then it is
garbaged (unless captured).
 A promisepromise contains

1)1) an expression code for the delayed
computation,
2)2) an environment in which it is evaluated,
and
3)3) a value accessed only by forcing

(**Basics)

Environment 2Environment 2

 Functions to treat environments can be
found in rlang
 An environment is conceptually similar to
a named list
> env1 <- rlang::env(
+ x = c(FALSE, TRUE),
+ y = "a",
+ z = 2.3,
+ t = matrix(1:4,2),
+)

Environment 2 (cont)Environment 2 (cont)

- Every name is unique.
- Names are not ordered.
- It has a parent.
- It is always modified in place and never
copied on modify.
 Track the parents up to the global
> rlang::env_parents(env2)
[[1]] <env: 000000000F217108>
[[2]] $ <env: global>

(**Basics)

Scoping and Environments 1Scoping and Environments 1

Name maskingName masking follows from static (lexical)
scoping in the environments, things defined
in the current env are used:
> rm(list=ls())
> x<-10; y<-20; g<-function(x)
x+10
> f<-function(x) {g<-function(x)
x+1; y<-1; z<-2; r<-x+y+z+g(x)
list(current = current_env(),
caller = caller_env())}
> env <- f(x = 7)
> env_print(env$current)
<environment: 0000000006124F60>
parent: <environment: global>
bindings:
* r: <dbl>
* z: <dbl>
* y: <dbl>
* g: <fn> #this is the g defined
in the current env
* x: <dbl>
> env_print(env$caller)
<environment: global>

Scoping and Environments 1 (cont)Scoping and Environments 1 (cont)

parent: <environment:
package:rlang>
bindings:
* x: <dbl>
* y: <dbl>
* env: <named list>
* .Random.seed: <int>
* f: <fn>
* g: <fn>
> g
function(x) x+10
> env$current$g
function(x) x+1
<environment:
0x0000000006124f60>
> c(env$current$z,env$current$r)
[1] 2 18

(*** Advanced)

By NikiNiki (worlddoit)
cheatography.com/worlddoit/

Not published yet.
Last updated 9th December, 2022.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/worlddoit/
http://www.cheatography.com/worlddoit/cheat-sheets/r-part5
http://www.cheatography.com/worlddoit/
https://readable.com

r part5 Cheat Sheet
by Niki (worlddoit) via cheatography.com/170195/cs/35988/

Scoping and Environments 2Scoping and Environments 2

Dynamic lookup namesDynamic lookup names that are not defined
in the current
environment are searched in the parents
> rm(list=ls())
> y <- 10
> f <- function(x) {z<-2; r<-
x+y+z
+ list(current = current_env(),
caller = caller_env())
+ }
> env <- f(7)
> ls(env$current)
[1] "r" "x" "z"
> env$current$y
NULL
> ls(env$caller)
[1] "env" "f" "y"
> ls() #
[1] "env" "f" "y"
> codetools::findGlobals(f)
[1] "{" "+" "<-" "y"

(***Advanced)

Scoping and Environments 3Scoping and Environments 3

What happens in the function, stays in theWhat happens in the function, stays in the
functionfunction
> rm(list=ls())
> f <- function(){a<-1;
current_env()}
> f1 <- function(){a<-2; x<<-a;
current_env()}
> f2 <- function(){a<-3; a<<-a;
current_env()}
> env <- f(); ls(env); env$a
[1] "a"
[1] 1
> ls()
[1] "env" "f" "f1" "f2"
> env1 <- f1(); ls(env1); env1$a
[1] "a"
[1] 2
> ls(); x
[1] "env" "env1" "f" "f1" "f2"
"x"
[1] 2
> env2 <- f2(); ls(env2); env2$a
[1] "a"
[1] 3
> ls(); a
[1] "a" "env" "env1" "env2" "f"
"f1" "f2" "x"
[1] 3

(***Advanced)

Scoping and Environments 4Scoping and Environments 4

Non-functions objects are ignored inNon-functions objects are ignored in
function callsfunction calls
> rm(list=ls())
> x<-10; y<-20; g<-function(x)
x+10
> f <- function(x) {g<-1; y<-1;
z<-2; r<-x+y+z+g(g)
+ list(current = current_env(),
caller = caller_env())
+ }
> env<-f(7)
> ls(env$current)
[1] "g" "r" "x" "y" "z"
> ls(env$caller) #or simply ls()
[1] "env" "f" "g" "x" "y"
> env$current$g
[1] 1
> env$caller$g #or simply g
function(x) x+10
> fn_env(g)
<environment: R_GlobalEnv>

(***Advanced)

By NikiNiki (worlddoit)
cheatography.com/worlddoit/

Not published yet.
Last updated 9th December, 2022.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/worlddoit/
http://www.cheatography.com/worlddoit/cheat-sheets/r-part5
http://www.cheatography.com/worlddoit/
https://readable.com

	r part5 Cheat Sheet - Page 1
	Environment 1
	Scoping and Environments 1
	Environment 2

	r part5 Cheat Sheet - Page 2
	Scoping and Environments 2
	Scoping and Environments 3
	Scoping and Environments 4

