

r ml library Cheat Sheet

by Niki (worlddoit) via cheatography.com/170195/cs/36005/

Intro

Additional material about top libraries for Machine Learning in R.

(**Basics)

1. XML

You can read a xml file in R using the "-XML" package.

install.packages("XML")
Also load the other required
package.

library("methods")

Give the input file name to the function.

result <- xmlParse(file =

"input.xml")

Exract the root node form the xml file.

rootnode <- xmlRoot(result)</pre>

Find number of nodes in the root.

rootsize <- xmlSize(rootnode)</pre>

(*Additional) Resources: 1, 2

2. dplyr

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges:

mutate() adds new variables that are functions of existing variables select() picks variables based on their names.

filter() picks cases based on their values

summarise() reduces multiple values down to a single summary.

arrange() changes the ordering of the rows

These all combine naturally with group_by() which allows you to perform any operation "by group".

2. dplyr (cont)

Example:

```
starwars %>%
group_by(species) %>%
summarise( n = n(), mass =
mean(mass, na.rm = TRUE)
) %>%
filter( n > 1, mass > 50)
```

(*Additional) Resources: 1, 2

3. xgboost

```
library(xgboost)
# load data
data(agaricus.train, package =
'xqboost')
data(agaricus.test, package =
'xqboost')
train <- agaricus.train
test <- agaricus.test
# fit model
bst <- xgboost(data =
train$data, label = train$label,
\max depth = 2, eta = 1, nrounds
= 2,
nthread = 2, objective =
"binary:logistic")
# predict
pred <- predict(bst, test$data)</pre>
```

(*Additional) Resources: 1, 2

4. mlr3

Lots of functionality, you can deal with clustering, regression, classification, and survival analysis.

```
library(mlr3)
# create learning task
task_penguins =
as_task_classif(species ~ .,
data = palmerpenguins::penguins)
# load learner and set
hyperparameter
```

Not published yet. Last updated 11th December, 2022. Page 1 of 3.

4. mlr3 (cont)

```
learner = lrn("classif.rpart",
cp = .01)
# train/test split
split = partition(task penguins,
ratio = 0.67
# train the model
learner$train(task_penguins,
split$train set)
# predict data
prediction =
learner$predict(task_penguins,
split$test set)
# calculate performance
prediction$confusion
measure = msr("classif.acc")
prediction$score(measure)
# 3-fold cross validation
resampling = rsmp("cv", folds =
3L)
# run experiments
rr = resample(task penguins,
learner, resampling)
# access results
rr$score(measure)[, .(task_id,
learner id, iteration,
classif.acc)]
rr$aggregate (measure)
```

4. mlr3 additional

(*Additional) Resources: 1, 2, 3

(*Additional)

By **Niki** (worlddoit) cheatography.com/worlddoit/

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

r ml library Cheat Sheet

by Niki (worlddoit) via cheatography.com/170195/cs/36005/

5. knitr

It is reproducible, used for report creation, and integrates with various types of code structures like LaTeX, HTML, Markdown, LyX, etc.

This package is an amazing one, you can make a beautiful pdf report and editable pdf forms with the help of latex coding.

kable xtable tikzDevice

(*Additional) Resources: 1, 2

6. plotly

Plotly's R graphing library makes interactive, publication-quality graphs. Example of how to make line plots, scatter plots, area charts, bar charts, error bars, box plots, histograms, heatmaps, subplots, multiple-axes, and 3D (WebGL based) charts.

```
library(plotly)
# volcano is a numeric matrix
that ships with R
fig <- plot_ly(z = ~volcano) %>%
add_surface(
contours = list(
z = list( show=TRUE,
    usecolormap=TRUE,
    highlightcolor="#ff0000",
    project=list(z=TRUE) ) ) )
fig <- fig %>% layout(
scene = list( camera= list(
    eye = list(x=1.87, y=0.88, z=-
    0.64) )))
fig
```

(*Additional) Resources: 1, 2, 3

6. plotly: Output

(*Additional)

7. e1071

Dealing with clustering, Fourier Transform, Naive Bayes, SVM, and other types of modeling data analysis then you can't avoid e1071.

Example:

```
#Author DataFlair
library("e1071")
data("iris")
head(iris)
x <- iris[,-5]
y <- iris[5]
model_svm <- svm(Species ~ .,
data=iris)
summary(svm_model)
pred <- predict(model_svm,x)
confusionMatrix(pred,y$Species)</pre>
```

(*Additional) Ressources: 1, 2

8. tidyverse

For data manipulation. Covered in lectures (see previous sections).

Example:

library(tidyverse)
library(lubridate)
library(nycflights13)

Create a new column basis count option

```
flights %>%
mutate(long_flight = (air_time
>= 6 * 60)) %>%
```

8. tidyverse (cont)

View()

Randomly Shuffle the data

flights %>%
slice sample(n = 15)

(*Additional) Ressources: 1, 2

9. caret

If you are dealing with classification and regression problems then caret is one of the essential packages.

caret package is the extension of the caret is CaretEnsemble which is used for combining different models.

Example:

Visualization of feature distribution by class

featurePlot(x =
GermanCredit[,c("EmploymentDuratio
"Age")],
y = GermanCredit\$Class,
plot = "box")

Pre-processing: imputation of missing data, on hot encoding, and normalization

set.seed(355)
bagMissing <- preProcess(trainingS
method = "bagImpute")
trainingSet <- predict(bagMissing,
newdata = trainingSet)
dummyModel <- dummyVars(Class ~ .,
data = trainingSet)
trainingSetX <as.data.frame(predict(dummyModel,
newdata = trainingSet))</pre>

(*Additional) Ressources: 1, 2

By **Niki** (worlddoit) cheatography.com/worlddoit/

Not published yet.
Last updated 11th December, 2022.
Page 2 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

r ml library Cheat Sheet

by Niki (worlddoit) via cheatography.com/170195/cs/36005/

10. shiny

If you are thinking about an interactive and beautiful web interface then Shiny is the solution.

Shiny interfaces are directly written in R and provide a customizable slider widget that has built-in support for animation.

Example:

```
library(shiny)
# See above for the definitions
of ui and server
ui <- ...
server <- ...
shinyApp(ui = ui, server =
server)</pre>
```

(*Additional) Ressources: 1, 2

10. shiny: Output

(*Additional) Ressources: 1, 2

11. tidyquant

tidyquant is considered as a financial package that is used to carry out quantitative financial analysis.

Package tidyquant is also widely used for importing, analyzing, and visualizing data. Example:

```
library(tidyquant)
google <- tq_get(x = "GOOG")
tq_get_options()
?tq_get
tq_exchange_options()
nyse <- tq_exchange("NYSE")</pre>
```

(*Additional) Ressources: 1, 2

C

By **Niki** (worlddoit) cheatography.com/worlddoit/

12. tidyr

tidyr is a new package that makes it easy to "tidy" your data. tidyr package is an evolution of Reshape2.

The data is considered tidy when each variable represents columns and each row represents an observation.

gather() makes "wide" data longer
spread() makes "long" data wider
separate() splits a single column into
multiple columns

unite() combines multiple columns into a single column

and More...

Example:

```
wide_DF <- unite_DF %>%
spread(Quarter, Revenue)
head(wide DF, 24)
```

(*Additional) Ressources: 1, 2

13. ggraph

Takes away all the limitations of ggplot2. Example for Networks:

```
ggraph(ig_loc, layout="fr") +
geom_edge_link(aes(color =
factor(to), width =
log(weight)), alpha = 0.5,
start_cap = circle(2, 'mm'),
end_cap = circle(2, 'mm')) +
scale_edge_width(range = c(0.5,
2.5)) +
geom_node_point(color =
V(ig_loc)$color, size = 5, alpha
= 0.5) +
geom_node_text(aes(label =
name), repel = TRUE) +
theme_void() +
theme(legend.position = "none")
```

(*Additional) Ressources: 1, 2, 3

Not published yet. Last updated 11th December, 2022. Page 3 of 3.

13. ggraph: Output

(*Additional)

14. ggplot2

ggplot2 is one of the most popular visualization package in R.

It is famous for its functionality and high-quality graphs that set it apart from other visualization packages.

Example:

```
ggplot(chic, aes(x = o3, y =
temp))+
labs(x = "Ozone Level", y =
"Temperature (°F)") +
geom_smooth(
method = "lm",
formula = y ~ x + I(x^2) +
I(x^3) + I(x^4) + I(x^5),
color = "black",
fill = "firebrick") +
geom_point(color = "gray40",
alpha = .3)
```

(*Additional) Ressources: 1, 2, 3

14. ggplot2: Output

(*Additional)

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com