\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{woozing} \pdfinfo{ /Title (ptc-c7-basic-animal-cell-culture.pdf) /Creator (Cheatography) /Author (woozing) /Subject (PTC - C7 (Basic Animal Cell Culture) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{107D38} \definecolor{LightBackground}{HTML}{F7FAF8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{PTC - C7 (Basic Animal Cell Culture) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{woozing} via \textcolor{DarkBackground}{\uline{cheatography.com/146689/cs/31839/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}woozing \\ \uline{cheatography.com/woozing} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 25th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Overview}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650811917_Screenshot 2022-04-24 225133.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Application}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. The study of basic cell biology, cell cycle mechanisms, specialized cell function, cell–cell and cell–matrix interactions.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. Toxicity testing to study the effects of new drugs.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Gene therapy for replacing nonfunctional genes with functional gene-carrying cells.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. The characterization of cancer cells, the role of various chemicals, viruses, and radiation in cancer cells.} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. Production of vaccines, mABs, and pharmaceutical drugs.} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{6. Production of viruses for use in vaccine production (e.g., chicken pox, polio, rabies, hepatitis B, and measles).} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Types of Tissue Culture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650811871_Screenshot 2022-04-24 225042.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Explant Culture Procedure}} \tn % Row 0 \SetRowColor{LightBackground} 1. Obtaining the Explant & -obtained surgically using sterile equipment from mammals, rodents or avian organs or tissues \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} & -ex 1: a piece of gingival tissue following tooth extraction can be removed as an explant to establish human gingival fibroblasts \tn % Row Count 12 (+ 7) % Row 2 \SetRowColor{LightBackground} & -ex 2: a piece of adipose tissue can be used to establish mesenchymal stem cells \tn % Row Count 16 (+ 4) % Row 3 \SetRowColor{white} 2. Cut and Clean the Explant & -place the explant in a petri dish containing around 1-2 mL of incomplete medium (medium without serum) \tn % Row Count 22 (+ 6) % Row 4 \SetRowColor{LightBackground} & -using a sharp surgical blade, you can cut it (usually around 1×1 mm pieces) \tn % Row Count 26 (+ 4) % Row 5 \SetRowColor{white} & -collect the pieces of explant using a sterile forceps and wash gently \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Explant Culture Procedure (cont)}} \tn % Row 6 \SetRowColor{LightBackground} & -washing can be done by transferring pieces into a centrifuge tube containing around 0.5 mL of incomplete medium \tn % Row Count 6 (+ 6) % Row 7 \SetRowColor{white} & -gently mix by pipetting the medium 4 to 5 times, and allow the pieces to settle down and remove the upper medium \tn % Row Count 12 (+ 6) % Row 8 \SetRowColor{LightBackground} & -can be repeated 2 or 3 times \tn % Row Count 14 (+ 2) % Row 9 \SetRowColor{white} 3. Culturing the Explants & -obtained explants are aseptically placed on a coated surface and allowed to attach to the surface in the presence of a rich culture medium \tn % Row Count 21 (+ 7) % Row 10 \SetRowColor{LightBackground} & - medium ex: basal minimal media, Dulbecco's Modified Eagle Medium (DMEM) or Minimum Essential Medium Eagle (MEM) supplemented with 10-15\% serum \tn % Row Count 29 (+ 8) % Row 11 \SetRowColor{white} & -cultured in standard tissue culture conditions (pH 7.2-7.4, temperature 37°C, 5\% CO2 and humidity) to allow for cell migration and proliferation \tn % Row Count 37 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Explant Culture Procedure (cont)}} \tn % Row 12 \SetRowColor{LightBackground} & -change the media every 3 days without disturbing the explants \tn % Row Count 4 (+ 4) % Row 13 \SetRowColor{white} & -depending upon the health and age of the tissue, cells emerge out of the explant within 15-30 days \tn % Row Count 9 (+ 5) % Row 14 \SetRowColor{LightBackground} & -once outgrowth of cells starts from the explant, add 5 mL of medium to the flask in subsequent days \tn % Row Count 14 (+ 5) % Row 15 \SetRowColor{white} 4. Once outgrowth of cells starts from the explant, add 5 mL of medium to the flask in subsequent days & -after the explants are completely surrounded by the cells, you can trypsinise the cells and subculture. \tn % Row Count 20 (+ 6) % Row 16 \SetRowColor{LightBackground} & -it is better to use a lower concentration of trypsin (e.g. \textless{}0.25\% of trypsin for 5 min) \tn % Row Count 25 (+ 5) % Row 17 \SetRowColor{white} & -choose an appropriate size of flask for seeding, depending on the total number of cells obtained \tn % Row Count 30 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Types of Tissue Culture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650812988_Screenshot 2022-04-24 230805.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Primary Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-cultures prepared from tissues taken directly from animals} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1. Organ Culture & (google)-organ culture is able to accurately model functions of an organ in various states and conditions by the use of the actual in vitro organ itself \tn % Row Count 9 (+ 7) % Row 2 \SetRowColor{LightBackground} & -maintenance of a piece of tissue, a part of organ or a whole organ in vitro \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} 2. Primary Cell Culture & -when taken tissue is dissociated, mechanically or enzymatically, into single cells which could be plated on a coated surface \tn % Row Count 19 (+ 6) % Row 4 \SetRowColor{LightBackground} 3. Slice Tissue Culture & -referred to as explant or organotypic cultures \tn % Row Count 22 (+ 3) % Row 5 \SetRowColor{white} & -small pieces of tissue of interest are simply allowed to attach to an appropriate substrate and are cultured in enriched media \tn % Row Count 28 (+ 6) % Row 6 \SetRowColor{LightBackground} 4. Re-aggregate Culture & -dissociated cells is kept in suspension rather than allowed to settle on and attach to solid substrate \tn % Row Count 33 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Primary Culture (cont)}} \tn % Row 7 \SetRowColor{LightBackground} & -cells tend to re-aggregate into small balls \tn % Row Count 2 (+ 2) % Row 8 \SetRowColor{white} & -allowed cells cells to develop in three dimensions \tn % Row Count 5 (+ 3) % Row 9 \SetRowColor{LightBackground} 5. Histotypic or histoculture & -culture of intact tissues \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{(Google) - Histotypic culture is defined as three-dimensional culture of one cell type, while the term organotypic implies the interaction of two or more cell types from a complex tissue or organ.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Types of Cells}} \tn % Row 0 \SetRowColor{LightBackground} 1. \seqsplit{Epithelial-Like} & -cells that are attached to a substrate and appear flattened and polygonal in shape \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} 2. \seqsplit{Lymphoblast-Like} & -cells that do not attach normally to a substrate but remain in suspension with a spherical shape \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} 3. \seqsplit{Fibroblast-Like} & -cells that are attached to a substrate and appear elongated and bipolar, frequently forming swirls in heavy cultures \tn % Row Count 13 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\emph{It is important to remember that the culture conditions play an important role in determining shape and that many cell cultures are capable of exhibiting multiple morphologies.}}} \tn % Row Count 17 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.08 cm} x{3.92 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Types of Cell Culture}} \tn % Row 0 \SetRowColor{LightBackground} 1. Primary Cell Culture & -Adherent Cell Culture \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & -Suspension Cell Culture \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 2. Secondary Cell Culture & - \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} 3. Cell Line & -Finite Cell Line \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} & -Continuous Cell Line \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. Primary Cell Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-maintenance of growth of cells in culture medium using suitable glass or plastic containers} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-using the mechanical or enzymatic methods} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-dissociated directly from the parental tissue (such as kidney, liver)} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-they will attach, divide and grow} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 6 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{2 types of primary cell culture depending upon the kind of cells in culture}}} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} a) Anchorage Dependent /Adherent cells & -require attachment for cell growth \tn % Row Count 10 (+ 2) % Row 7 \SetRowColor{white} & -monolayer culture system \tn % Row Count 12 (+ 2) % Row 8 \SetRowColor{LightBackground} & -usually derived from tissues of organs such as kidney where they are immobile and embedded in connective tissue \tn % Row Count 18 (+ 6) % Row 9 \SetRowColor{white} & (google)-have to be detached from surface before being subcultured \tn % Row Count 22 (+ 4) % Row 10 \SetRowColor{LightBackground} & (google)-growth limited to surface area \tn % Row Count 24 (+ 2) % Row 11 \SetRowColor{white} b) Suspension Culture/Anchorage Independent cells & -do not require attachment for cell growth/do not attach to the surface of the culture vessels \tn % Row Count 29 (+ 5) % Row 12 \SetRowColor{LightBackground} & -all suspension cultures are derived from cells of the blood system because these cells are also suspended in plasma in vitro e.g. lymphocytes \tn % Row Count 37 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Primary Cell Culture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650860786_Screenshot 2022-04-25 122546.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{2. Secondary Cell Cultures}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-When a primary culture is sub-cultured, it becomes known as secondary culture or cell line.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{3. Cell Line}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-cell population derived from a primary culture at the first subculture} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{(google)-usually clonal, meaning that the entire population originated from a single common ancestor cell} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-the term does not imply homogeneity or the degree to which a culture has been characterized} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 7 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{may be finite or continuous depending upon whether it has limited culture life span or it is immortal in culture}}} \tn % Row Count 10 (+ 3) % Row 5 \SetRowColor{white} a) Finite Cell Lines & -cell lines which have a limited life span and go through a limited number of cell generations \tn % Row Count 14 (+ 4) % Row 6 \SetRowColor{LightBackground} & -growth rate is slow and doubling time is around 24-96 hours \tn % Row Count 17 (+ 3) % Row 7 \SetRowColor{white} b) Continuous Cell Lines & -grow indefinitely \tn % Row Count 19 (+ 2) % Row 8 \SetRowColor{LightBackground} & -cell lines transformed under laboratory conditions or in vitro culture conditions give rise to continuous cell lines \tn % Row Count 24 (+ 5) % Row 9 \SetRowColor{white} & -growth rate is rapid and doubling time is 12-24 hours \tn % Row Count 27 (+ 3) % Row 10 \SetRowColor{LightBackground} c) Transformed Cell Line & -cell lines obtained from tumor cells \tn % Row Count 29 (+ 2) % Row 11 \SetRowColor{white} d) Clonal Cell Line & -cells could be cloned in continuous cell lines to obtain genetically homogenous population \tn % Row Count 33 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Finite Cell Lines}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650876866_Screenshot 2022-04-25 123539.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Continuous Cell Line}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650876904_Screenshot 2022-04-25 123650.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Difference of Normal and Transformed Cells}} \tn % Row 0 \SetRowColor{LightBackground} Normal Cells & Transformed Cells \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1. Anchorage-dependent (except blood cells) & 1. \seqsplit{Nonanchorage-dependent} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} 2. Density-dependent inhibition of proliferation & 2. No density-dependent inhibition of proliferation \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} 3. Mortal; Finite Cell Line & 3. Immortal; Continuous Cell Line \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} 4. Contact Inhibition; Monolayer Culture & 4. No Contact Inhibition; Multilayer Culture \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} 5. Dependent on external growth factor signals for proliferation & 5. May not need an external source of growth factors \tn % Row Count 16 (+ 4) % Row 6 \SetRowColor{LightBackground} 6. Greater retention of differentiated cellular function & 6. Typically loss of differentiated cellular function \tn % Row Count 19 (+ 3) % Row 7 \SetRowColor{white} & -shorter population doubling time \tn % Row Count 21 (+ 2) % Row 8 \SetRowColor{LightBackground} & -reduced substrate adhesion \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} & -genetic instability (e.g. show heteroploidy and aneuploidy) \tn % Row Count 26 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Contact-Inhibition of Growth}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650863425_What-is-Contact-Inhibition.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Density-dependent Inhibition of Proliferation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-reduction in proliferative activity that correlates with the attainment of confluency, that is,occupancy of all available attachment surface} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-can occur before confluence is reached, and reflects diminished nutrient supply and the release of cell-derived factors (including waste products) into the medium} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 7 (+ 0) % Row 3 \SetRowColor{white} {\bf{Saturation Density}} & -population density (cells/cm2) at the point when it reaches density-dependent inhibition of growth \tn % Row Count 11 (+ 4) % Row 4 \SetRowColor{LightBackground} & -population density (cells/cm2) at the point when it reaches density-dependent inhibition of growth \tn % Row Count 15 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Cell Ageing in Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-also known as In vitro cell senescence} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-involve progressive alterations in a number of cell characteristics} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Normal cell lines commonly have a finite lifespan, that is, they do not grow beyond a finite number of cell generations (population doublings).} \tn % Row Count 6 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Eg, the lifespan of normal diploid fibroblasts is in the range of 50-70 population doubling.} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Transformed Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-cancerous cells} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-possess all six hallmarks of cancerous cells :} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Growth factor independency} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. No response to growth inhibitors} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Evasion of apoptosis (Natural cell death)} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. Can promote angiogenesis (the development of new blood vessels)} \tn % Row Count 7 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. Unlimited proliferation - rapid increase} \tn % Row Count 8 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{6. Invasive - tending to spread very quickly and undesirably or harmfully} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Immortalization}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Cell lines that have unlimited lifespan arc termed immortal or, preferably, continuous} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{the term immortalized and transformed are not synonymous}}} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Although infinite lifespan is generally considered to be a characteristic of transformed cells, not all continuous cell lines exhibit alterations in growth control attributed to cellular transformation.} \tn % Row Count 9 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 9 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Immortalized Cells }}} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-not yet cancerous, but have sufficient mutations to be able to be passaged forever, unlike non-transformed, non-immortalized cells, which all have a finite passage number} \tn % Row Count 14 (+ 4) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-population of cells from a multicellular organism due to mutation, which can escape normal cellular senescence and keep undergoing division} \tn % Row Count 17 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-this kind of cells can grow in vitro for prolonged periods} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Cell Strain}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-describe a subcultured population selected on the basis of its expression of specific properties, functional characteristics, or markers} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Clonal Culture / Clonal Selection}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-clone} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-establishment of a cultured cell population derived from a single cell} \tn % Row Count 3 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Sub-culturing (or passage)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Transfer or transplant cells of an ongoing culture to a new culture vessel so as to propagate the cell population or set up replicate cultures for study.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Subculturing or splitting cells is required to periodically provide fresh nutrients and growing space for continuously growing cell lines.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Such cultures may be called secondary cultures (first subculture from primary culture)} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 9 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Criteria for Subculturing} \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{1. Cell concentration: should not exceed 1 x 10\textasciicircum{}6 cells/mL for most suspension-growing cells} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{2. pH: which is linked to cell concentration, and declines as the cell concentration rises} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{3. Time since last subculture: should fit a regular schedule} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{4. Cell production requirements: for experimental or production purposes} \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Animal Cell Culture}} \tn % Row 0 \SetRowColor{LightBackground} Advantage & Disadvantage \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1. Controlled physiochemical environment (pH, temperature, osmotic pressure, O2, osmolarity etc.) & 1. Expertise is needed, so that behavior of cells in culture can be interpreted and regulated. \tn % Row Count 6 (+ 5) % Row 2 \SetRowColor{LightBackground} 2. Controlled and defined physiological conditions - nutrient concentration, cell to cell interactions, hormonal control. & 2. Need of expertise and technical skill for the development, and regular use of tissue culture. \tn % Row Count 13 (+ 7) % Row 3 \SetRowColor{white} 3. Homogeneity of cell types (achieved through serial passages)/ Homogenous genetic population & 3. Ten times more expensive for same quantity of animal tissue; therefore, reasons for its use should be compelling. \tn % Row Count 19 (+ 6) % Row 4 \SetRowColor{LightBackground} 4. Economical, since smaller quantities of reagents are needed than in vivo. & 4. Unstable aneuploid chromosome constitution. \tn % Row Count 23 (+ 4) % Row 5 \SetRowColor{white} 5. Legal, moral and ethical questions of animal experimentation are avoided. & 5. Cost factor is a major limitation. \tn % Row Count 27 (+ 4) % Row 6 \SetRowColor{LightBackground} 6. Cost effective screening assays & -Establishment of infrastructure, equipment and other facilities are expensive. \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Animal Cell Culture (cont)}} \tn % Row 7 \SetRowColor{LightBackground} 7. Easy production of biopharmaceuticals & -It is estimated that the cost of production of cells is about 10 times higher than direct use of animal tissues. \tn % Row Count 6 (+ 6) % Row 8 \SetRowColor{white} 8. Available in adequate numbers to do chemical study & 6. Control of the environmental factors (pH, temperature, dissolved gases, disposal of biohazards) is not easy. \tn % Row Count 12 (+ 6) % Row 9 \SetRowColor{LightBackground} 9. Easy to add genes (transfection) or regulate protein levels (RNAi) & 7. The native in vivo cells exist in a three- dimensional geometry while in in vitro tissue culture, the propagation of cells occurs on a two dimensional substrate. \tn % Row Count 21 (+ 9) % Row 10 \SetRowColor{white} & -Due to this, the cell to cell interactive characters are lost. \tn % Row Count 25 (+ 4) % Row 11 \SetRowColor{LightBackground} & 8. The cell lines may represent one or two types of cells from the native tissue while others may go unrepresented. \tn % Row Count 31 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Animal Cell Culture (cont)}} \tn % Row 12 \SetRowColor{LightBackground} & 9. Tissue culture techniques are associated with the differentiation i.e. loss of the characters of the tissue cells from which they were originally isolated. \tn % Row Count 8 (+ 8) % Row 13 \SetRowColor{white} & -This happens due to adaptation and selection processes while culturing. \tn % Row Count 12 (+ 4) % Row 14 \SetRowColor{LightBackground} & 10. Continuous cell lines may result in genetic instability of the cells. \tn % Row Count 16 (+ 4) % Row 15 \SetRowColor{white} & -This may ultimately lead to heterogeneity of cells. \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.64 cm} x{5.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Growth Measuring Methods}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{1. Direct Methods} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 2. Cells & -Packed Cell Volume \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} & -Cell count and viability \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} & -Colony forming unit \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} & -Optical density (OD) \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} 3. Tissues & -Fresh weight and dry weight \tn % Row Count 7 (+ 2) % Row 6 \SetRowColor{LightBackground} 4. Indirect Method & -Mostly used for large-scale cultures \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.04 cm} x{2.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Growth Observing}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{1. Increase in turbidity of cells} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 2. Increase in size of tissues/ explants & -swelling \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} & -curling \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} & \seqsplit{-proliferation} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} 3. Decrease in turbidity and size & -death \tn % Row Count 7 (+ 2) % Row 5 \SetRowColor{white} & -apoptosis and necrosis \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} 4. Microscopic observation & -Stereoscope \tn % Row Count 11 (+ 2) % Row 7 \SetRowColor{white} & -Inverted microscope \tn % Row Count 13 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 13 (+ 0) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\emph{Necrosis is caused by factors external to the cell or tissue, such as infection. }}} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Characterization of Cell Lines}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{a) growth rate} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{b) karyotyping (C11)} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.32 cm} x{5.68 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Growth Curve}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-established taking into consideration the population doubling time, a lag time, and a saturation density of a particular cell line.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 1. Lag Phase & The time the cell population takes to recover from such sub culture, attach to the culture vessel and spread. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} 2. Log Phase & In this phase the cell number begins to increase exponentially. \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} 3. Plateau Phase & During this phase, the growth rate slows or stops due to exhaustion of growth medium or confluency. \tn % Row Count 14 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Bacterial Growth Curve}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-Unicellular organisms divide by binary fission} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-Each cell grows to full size, replicates its genetic material then divides into two identical daughter cells.} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-By identical means, two cells divide into four, four into eight and so on, leading to an exponential increase in cell numbers: 1 → 2 → 4 → 8 →2\textasciicircum{}n} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-If we were to plot the number of cells in a population against time, we would get an exponential curve} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} -Growth usually slows down due to: & a) supply of nutrients becoming exhausted \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} & b) because metabolism leads to an accumulation of harmful waste substances \tn % Row Count 17 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 17 (+ 0) % Row 7 \SetRowColor{white} Lag Phase & -When an inoculum of bacteria is first introduced into some growth medium, it will probably require a period to adapt to its new surroundings \tn % Row Count 24 (+ 7) % Row 8 \SetRowColor{LightBackground} & -When an inoculum of bacteria is first introduced into some growth medium, it will probably require a period to adapt to its new surroundings \tn % Row Count 31 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Bacterial Growth Curve (cont)}} \tn % Row 9 \SetRowColor{LightBackground} & -Eg, the carbon source in the medium is unfamiliar, the cells will need time to synthesise the necessary enzymes for its metabolism. \tn % Row Count 7 (+ 7) % Row 10 \SetRowColor{white} & -Synthesize molecules needed for protein synthesis and enzymes required for cell division \tn % Row Count 12 (+ 5) % Row 11 \SetRowColor{LightBackground} & -no net increase in bacterial numbers, however the cells are metabolically active. \tn % Row Count 16 (+ 4) % Row 12 \SetRowColor{white} Length of the lag phase depend on: & a) age and general health of the cells in the inoculum \tn % Row Count 19 (+ 3) % Row 13 \SetRowColor{LightBackground} & b) conditions of bacteria before transfer into growth medium \tn % Row Count 22 (+ 3) % Row 14 \SetRowColor{white} & c) content of the growth medium \tn % Row Count 24 (+ 2) % Row 15 \SetRowColor{LightBackground} Log (exponential) Phase & -When the bacteria have acclimatized to their new environment and synthesized the enzymes needed to utilize the available substrates, they are able to start regular division by binary fission. \tn % Row Count 34 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Bacterial Growth Curve (cont)}} \tn % Row 16 \SetRowColor{LightBackground} & -leads to the exponential increase in numbers \tn % Row Count 3 (+ 3) % Row 17 \SetRowColor{white} & -under optimal conditions, the population of cells will double in a constant and predictable length of time, known as the generation (doubling) time. \tn % Row Count 11 (+ 8) % Row 18 \SetRowColor{LightBackground} & -Cells are dividing at maximal rate \tn % Row Count 13 (+ 2) % Row 19 \SetRowColor{white} & -Cells are most susceptible to the action of antibiotics and other deleterious agents \tn % Row Count 18 (+ 5) % Row 20 \SetRowColor{LightBackground} Stationary phase & -exponential phase is limited by environmental factors, and as the rate of growth slows down, the culture enters the next phase \tn % Row Count 25 (+ 7) % Row 21 \SetRowColor{white} & -The levelling out of the growth curve does not mean that cell division has ceased completely, but rather that the increase due to newly formed cells is cancelled out by a similar number of cell deaths. \tn % Row Count 35 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Bacterial Growth Curve (cont)}} \tn % Row 22 \SetRowColor{LightBackground} & -Occurs when the number of viable cells stops increasing \tn % Row Count 3 (+ 3) % Row 23 \SetRowColor{white} & -Due to nutrients being used up and/or toxic products accumulating from cell's metabolism \tn % Row Count 8 (+ 5) % Row 24 \SetRowColor{LightBackground} & -as the death rate increases, the overall numbers fall and we enter the final phase of growth. \tn % Row Count 13 (+ 5) % Row 25 \SetRowColor{white} Death (or decline) phase & -As cells die off and the culture is unable to replace them, the total population of viable cells falls. \tn % Row Count 18 (+ 5) % Row 26 \SetRowColor{LightBackground} & -Exponential decrease in the number of viable cells \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}