\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{woozing} \pdfinfo{ /Title (ptc-c13-applications-of-plant-tissue-culture.pdf) /Creator (Cheatography) /Author (woozing) /Subject (PTC - C13 (Applications of Plant Tissue Culture) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A0C98B} \definecolor{LightBackground}{HTML}{F3F8F0} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{PTC - C13 (Applications of Plant Tissue Culture) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{woozing} via \textcolor{DarkBackground}{\uline{cheatography.com/146689/cs/31899/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}woozing \\ \uline{cheatography.com/woozing} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 28th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Application}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. The commercial production of plants which uses meristem \& shoot culture to produce large numbers of identical individuals.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. To conserve rare or endangered plant species.} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. A plant breeder may use tissue culture to screen cells rather than plants for advantageous characters.} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. Large scale growth of plants in liquid culture in bioreactors for the production of valuable compounds.} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. To cross distantly related species by protoplast fusion \& regeneration of the novel hybrid.} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Types of In Vitro Culture (explant based)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Culture of intact plants (seed and seedling culture)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. Embryo culture (immature embryo culture)} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Organ culture (Hairy Root Culture, Shoot tip and meristem culture)} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. Callus culture} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. Cell suspension culture} \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{6. Protoplast culture} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Types of In Vitro Culture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157471_Screenshot 2022-04-28 144249.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. Seed Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-growing seed aseptically in vitro on artificial media} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-Use:} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-\textgreater{}Increasing efficiency of germination of seeds that are difficult to germinate in vivo} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-\textgreater{}Precocious germination by application of plant growth regulators} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-\textgreater{}Production of clean seedlings for explants or meristem culture} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-\textgreater{}In vitro selection} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{2. Embryo Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-growing embryo aseptically in vitro on artificial nutrient media} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Use:} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Rescue embryos (embryo rescue) from wide crosses where fertilization occurred, but embryo development did not occur} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Production of plants from embryos developed by non-sexual methods (haploid production)} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Overcoming embryo abortion due to incompatibility barriers} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Overcoming seed dormancy and self-sterility of seeds} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Shortening of breeding cycle} \tn % Row Count 13 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 13 (+ 0) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{The advantages of growing an embryo isolated from the rest of the seed}}} \tn % Row Count 15 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-To remove the immature plant from the endosperm and/or cotyledon(s) which may in particular cases prevent or modify the development of the plant.} \tn % Row Count 18 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-As a means of propagating species which resist attempts to use standard methods of vegetative propagation.} \tn % Row Count 21 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Rescue of weak/ aborting embryos resulting from breeding/ crossing process} \tn % Row Count 23 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.24 cm} x{5.76 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{3. Organ Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-Any plant organ can serve as an explant to initiate cultures} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 2 \SetRowColor{LightBackground} {\bf{Organ}} & {\bf{Culture Types}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Shoot & a) Shoot tip culture \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Root & b) Root culture \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} Leaf & c) Leaf culture \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} Flower & d) Anther/ovary culture \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{3a) Shoot Apical Meristem Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Shoot tip can be cultured in vitro, producing clumps of shoots from either axillary or adventitious buds.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-This method can be used for clonal propagation} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Shoot meristem cultures are potential alternatives methods for cereal regeneration as they are less genotype-dependent and more efficient} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Use:} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Production of virus free germplasm} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. Mass production of desirable genotypes} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Facilitation of exchange between locations (production of clean material)} \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. Cryopreservation (cold storage) or in vitro conservation of germplasm} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{3b) Root Organ Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-can be established in vitro from explants of the root tip of either primary or lateral roots and can be cultured on fairly simple media} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-growth of roots in vitro is potentially unlimited, as roots are indeterminate organs} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Use:} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{1. Production secondary metabolites} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{2. Study the physiology and metabolism of roots, and primary root to determinate growth patterns} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Root Culture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157507_Screenshot 2022-04-28 154517.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{3d) Anther/Ovary culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-production of haploid plants} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 1 (+ 0) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Ovary/Ovule Culture}}} \tn % Row Count 2 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Use:} \tn % Row Count 3 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Production of haploid plants} \tn % Row Count 4 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. A common explant for the initiation of somatic embryogenic cultures} \tn % Row Count 6 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Overcoming abortion of embryos of wide hybrids at very early stages of development due to incompatibility barriers} \tn % Row Count 9 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. In vitro fertilization for the production of distant hybrids avoiding style and stigmatic incompatibility that inhibits pollen germination and pollen tube growth} \tn % Row Count 13 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 13 (+ 0) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Anther and Microspore Culture }}} \tn % Row Count 14 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Production of haploid plants} \tn % Row Count 15 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. Production of homozygous diploid lines through chromosome doubling, thus reducing the time required to produce inbred lines} \tn % Row Count 18 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Uncovering mutations or recessive phenotypes} \tn % Row Count 19 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4. Callus Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-un-organized mass of cells} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-tissue that develops in response to injury caused by physical or chemical means} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Most cells of which are differentiated although may be and are often highly unorganized within the tissue} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{Culturing Callus}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Production of plantlets through somatic embryogenesis or organogenesis} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Secondary metabolites production} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Any plant tissue can be used as an explant} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-often performed in the dark as light can encourage differentiation of the callus} \tn % Row Count 13 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-During long-term culture, the culture may lose the requirement for auxin and/or cytokinin - 'habituation' - common in callus cultures} \tn % Row Count 16 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Manipulation of the auxin to cytokinin ratio in the medium can lead to the development of shoots, roots or somatic embryos} \tn % Row Count 19 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Callus cultures can also be used to initiate cell suspensions} \tn % Row Count 21 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{Development of Callus}}} \tn % Row Count 22 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-The proliferation can be maintained more or less indefinitely, if the callus is subcultured on to fresh medium periodically} \tn % Row Count 25 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Callus is usually composed of unspecialized parenchyma cells} \tn % Row Count 27 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-During callus formation there is some degree of dedifferentiation} \tn % Row Count 29 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-i.e. the changes that occur during development and specialization are, to some extent, reversed, both in morphology and metabolism} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4. Callus Culture (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-One major consequence of dedifferentiation: most plant cultures lose the ability to photosynthesize} \tn % Row Count 2 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Two categories of callus:}}} \tn % Row Count 3 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{a) Compact callus: the cells are densely aggregated} \tn % Row Count 5 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{b) Friable callus: the cells are only loosely associated with each other and the callus becomes soft and breaks apart easily} \tn % Row Count 8 (+ 3) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 8 (+ 0) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{The friability of callus can be improved by: }}} \tn % Row Count 9 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{a) manipulating the medium components} \tn % Row Count 10 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{b) repeated subculturing} \tn % Row Count 11 (+ 1) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{c) culturing it on 'semi-solid' medium (medium with a low concentration of gelling agent)} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{5. Cell Suspension Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-When callus pieces are agitated in a liquid medium, they tend to break up.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Suspensions are much easier to bulk up than callus since there is no manual transfer or solid support.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Friable callus provides the inoculum to form cell-suspension cultures} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 7 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Growing of cell suspension from friable callus }}} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}liquid medium} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}agitated} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}single cells and/or small clumps of cells are released} \tn % Row Count 13 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}continue to grow and divide} \tn % Row Count 14 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}cell-suspension culture} \tn % Row Count 15 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 15 (+ 0) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Criteria in growing cell suspension from friable callus:}}} \tn % Row Count 17 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-A relatively large inoculum should be used when initiating cell suspensions so that the released cell numbers build up quickly.} \tn % Row Count 20 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-The inoculum should not be too large though, as toxic products released from damaged or stressed cells can build up to lethal levels.} \tn % Row Count 23 (+ 3) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Cell suspensions can be maintained relatively simply as batch cultures in conical flasks.} \tn % Row Count 25 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-The degree of dilution during subculture should be determined empirically for each culture.} \tn % Row Count 27 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Too great a degree of dilution will result in a greatly extended lag period or, in extreme cases, death of the transferred cells.} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{5. Cell Suspension Culture (cont)}} \tn % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-After subculture, cells divide and culture biomass increases in a characteristic fashion, until nutrients in the medium are exhausted and/or toxic by-products build up to inhibitory levels -\textgreater{}'stationary phase'} \tn % Row Count 5 (+ 5) % Row 18 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-If cells are left in the stationary phase for too long, they will die and the culture will be lost} \tn % Row Count 7 (+ 2) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-cells should be transferred as they enter the stationary phase} \tn % Row Count 9 (+ 2) % Row 20 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-important to determine batch growth-cycle parameters for each cell-suspension culture} \tn % Row Count 11 (+ 2) % Row 21 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 11 (+ 0) % Row 22 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Advantage}}} \tn % Row Count 12 (+ 1) % Row 23 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. it can ultimately provide a continuous, reliable source of natural products.} \tn % Row Count 14 (+ 2) % Row 24 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. synthesis of bioactive secondary metabolites} \tn % Row Count 15 (+ 1) % Row 25 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. running in controlled environment} \tn % Row Count 16 (+ 1) % Row 26 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. independently from climate and soil conditions} \tn % Row Count 17 (+ 1) % Row 27 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 17 (+ 0) % Row 28 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Importance and Application of cell suspension culture as an experimental technique}}} \tn % Row Count 19 (+ 2) % Row 29 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Contribute information about cell physiology, biochemistry, metabolic events at the level of individual cells and small cell aggregates} \tn % Row Count 22 (+ 3) % Row 30 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Develop understanding of an organ formation or embryoid formation starting from single cell or small cell aggregates} \tn % Row Count 25 (+ 3) % Row 31 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Suspension culture derived from medicinally important plants can be studied for the production of secondary metabolites} \tn % Row Count 28 (+ 3) % Row 32 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Mutagenesis studies may be facilitated by the use of cell suspension cultures to produce mutant cell clones from which mutant plants can be raised} \tn % Row Count 31 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Introduction into Suspension}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157561_Screenshot 2022-04-28 214134.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{6. Protoplast Culture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-The living material of a plant or bacterial cell, including the protoplasm and plasma membrane after the cell wall has been removed.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Somatic Hybridization}}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-development of hybrid plants through the fusion of somatic protoplasts of two different plant species/varieties} \tn % Row Count 7 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Process:}}} \tn % Row Count 8 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{1. Isolation of protoplast} \tn % Row Count 9 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{2. Fusion of the protoplasts of desired species/varieties} \tn % Row Count 11 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{3. Identification and Selection of somatic hybrid cells} \tn % Row Count 13 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{4. Culture of the hybrid cells} \tn % Row Count 14 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{5. Regeneration of hybrid plants} \tn % Row Count 15 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 15 (+ 0) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{How to make a protoplast?}}} \tn % Row Count 16 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Two general approaches to removing the cell wall (without damaging the protoplast):} \tn % Row Count 18 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{a) Mechanical isolation: although possible, often results in low yields, poor quality and poor performance in culture due to substances released from damaged cells} \tn % Row Count 22 (+ 4) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{b) Enzymatic isolation: usually carried out in a simple salt solution (with a high osmoticum) + cell wall degrading enzymes.} \tn % Row Count 25 (+ 3) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-It is usual to use both cellulase and pectinase enzymes (must be of high quality and purity)} \tn % Row Count 27 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Protoplasts are fragile and easily damaged -\textgreater{} must be cultured carefully.} \tn % Row Count 29 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Liquid medium is not agitated and a high osmotic potential is maintained, at least in the initial stages.} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{6. Protoplast Culture (cont)}} \tn % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-The liquid medium must be shallow enough to allow aeration in the absence of agitation} \tn % Row Count 2 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Protoplasts can be plated out on to solid medium and callus produced} \tn % Row Count 4 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Whole plants can be regenerated by organogenesis or somatic embryogenesis from this callus} \tn % Row Count 6 (+ 2) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Protoplasts are ideal targets for transformation by a variety of means} \tn % Row Count 8 (+ 2) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 8 (+ 0) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Uses for Protoplast Fusion:}}} \tn % Row Count 9 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Combine two complete genomes} \tn % Row Count 10 (+ 1) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}another way to create allopolyploids} \tn % Row Count 11 (+ 1) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{2. In vitro fertilization} \tn % Row Count 12 (+ 1) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{3. Partial genome transfer} \tn % Row Count 13 (+ 1) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Exchange single or few traits between species} \tn % Row Count 14 (+ 1) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}May or may not require ionizing radiation} \tn % Row Count 15 (+ 1) % Row 30 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{4. Genetic engineering} \tn % Row Count 16 (+ 1) % Row 31 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Micro-injection, electroporation, Agrobacterium} \tn % Row Count 17 (+ 1) % Row 32 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. Transfer of organelles} \tn % Row Count 18 (+ 1) % Row 33 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}Unique to protoplast fusion} \tn % Row Count 19 (+ 1) % Row 34 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-\textgreater{}The transfer of mitochondria and/or chloroplasts between species} \tn % Row Count 21 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Protoplast}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157601_Screenshot 2022-04-28 220300.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Protoplast Fusion}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157633_Screenshot 2022-04-28 221014.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Plant Genetic Engineering}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Genetic Transformation}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Introduction of foreign DNA to generate novel genetic combinations.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Transfer of desirable genes for disease and pest resistance from related or unrelated plant species into high yielding susceptible cultivars.} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Study of structure and function of genes.} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 7 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Purposes of Introducing Novel Traits}}} \tn % Row Count 8 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Biodiversity screening: To look for new traits in other or wild population} \tn % Row Count 10 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{2. Management of germplasm: Propagation of elite germplasm through micropropagation} \tn % Row Count 12 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{3. Interspecific or intergeneric crosses: Introduction of traits from other genus or species} \tn % Row Count 14 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{4. Overcome crossing barrier: Use protoplast fusion or somatic hybridization to produce hybrids} \tn % Row Count 16 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{5. Genetic engineering: Introduce genes from the same species, distantly related species or unrelated species (e.g. bacteria into plants)} \tn % Row Count 19 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{6. Incorporation into plant breeding: Use selected inbreeds for gene transformation} \tn % Row Count 21 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 21 (+ 0) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Creation of Novel Traits }}} \tn % Row Count 22 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Somaclonal variation }}} \tn % Row Count 23 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Variation arise in culture (especially those undergone long period of culturing) due to genetic or epigenetic mutation} \tn % Row Count 26 (+ 3) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Mutagenesis }}} \tn % Row Count 27 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Treatment of cultures with mutagens, such as ethyl methane sulfonate (EMS), UV and radioactive radiations} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Plant Genetic Engineering (cont)}} \tn % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Dosage of mutagens can be vital, sub-vital or sub-lethal} \tn % Row Count 2 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Mild mutation - opt for vital} \tn % Row Count 3 (+ 1) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Heavy mutation – opt for subvital to sublethal} \tn % Row Count 4 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 4 (+ 0) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Purposes of Creating Novel Traits}}} \tn % Row Count 5 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{Propagate high yielders }}} \tn % Row Count 6 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Micropropagation of high yielders could increase yield} \tn % Row Count 8 (+ 2) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-This could be a strategy until full inbreeds are produced} \tn % Row Count 10 (+ 2) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Disease susceptibility }}} \tn % Row Count 11 (+ 1) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Reliance on one clone is dangerous to food security, since disease susceptibility could decimate the entire crop} \tn % Row Count 14 (+ 3) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-At least a few clones of the high yielders must be grown in a field and best if they are separated by rows} \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Plant Genetic Engineering Process}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157702_Screenshot 2022-04-28 223856.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Somaclonal Variation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1651157733_Screenshot 2022-04-28 224523.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Germplasm Conservation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Germplasm is living tissue from which new plants can be grown} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{(google)-Germplasm is the term used to describe the seeds, plants, or plant parts useful in crop breeding, research, and conservation efforts.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 5 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{An extension of micropropagation techniques through two methods: }}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Slow growth techniques e.g.: ↓ Temp., ↓ Light, media supplements ( growth retardants).} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Medium-term storage (1 to 4 years)} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 10 (+ 0) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Cryopreservation}}} \tn % Row Count 11 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Ultra low temperatures in liquid nitrogen at -196°C.} \tn % Row Count 13 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-Stops cell division \& metabolic processes} \tn % Row Count 14 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Very long-term (indefinite)} \tn % Row Count 15 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Pros and Cons of Plant Tissue Culture}} \tn % Row 0 \SetRowColor{LightBackground} Advantages & Disadvantages \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1. In plants prone to virus diseases, virus free explants (new meristem tissue is usually virus free) can be cultivated to provide virus free plants & 1. It is a labor intensive \& expensive process. \tn % Row Count 9 (+ 8) % Row 2 \SetRowColor{LightBackground} 2. Plant "tissue banks" can be frozen, the regenerated through tissue culture & 2. Not all plants can be successfully tissue cultured - it is usually because the medium of growth is not known. \tn % Row Count 15 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{3. Plant culture in approved media are easier to export than soil-grown plants, as they are pathogen free and take up little space (most current plant export is now done in this manner} \tn % Row Count 19 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{4. Tissue culture allows fast selections for crop improvement – explants are chosen from superior plants then cloned} \tn % Row Count 22 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{5. High degree of uniformity (true type plants) when compared to conventionally produced plants} \tn % Row Count 24 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}