\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{woozing} \pdfinfo{ /Title (plant-and-tissue-culture-c2-regeneration-pathway.pdf) /Creator (Cheatography) /Author (woozing) /Subject (PLANT \& TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{548F68} \definecolor{LightBackground}{HTML}{F4F8F5} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{PLANT \& TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{woozing} via \textcolor{DarkBackground}{\uline{cheatography.com/146689/cs/31782/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}woozing \\ \uline{cheatography.com/woozing} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 28th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Regeneration Ability of an Explant}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{depends on:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{1. Organ from which it is derived} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{2. The physiological state of explant/ Differences in the stage of the cells in the cell cycle} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{3. Size of the explant} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{4. Orientation of the explant on the medium} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{5. Inoculation density} \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{6. Availability or ability to transport endogenous growth regulators} \tn % Row Count 9 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{7. Metabolic capabilities of the cells} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Plant Regeneration Pathways}} \tn % Row 0 \SetRowColor{LightBackground} 1. Histogenesis (Micropropagation; Pre-existing Meristems) & Uses meristematic cells to regenerate whole plant (shoot culture/nodal culture) \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} 2. Organogenesis & Relies on the production of organs either directly from an explant or callus structure \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} 3. Somatic Embryogenesis & Embryo-like structures which can develop into whole plants in a way that is similar to zygotic embryos are formed from somatic cells \tn % Row Count 16 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. Histogenesis (Micropropagation)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-most commonly used tissue explants are the meristematic ends of the plants like the stem tip, auxillary bud tip \& root tip} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-these tissues have high rates of cell division \& produce required growth regulating substances including auxins \& cytokinin} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} Stage 0: Preparation of donor plant & -if possible, mother plant should be ex vitro cultivated under optimal conditions to minimize contamination in the in vitro culture \tn % Row Count 13 (+ 7) % Row 3 \SetRowColor{white} & -explant should be selected from young and healthy part that actively grow \tn % Row Count 17 (+ 4) % Row 4 \SetRowColor{LightBackground} & -collection prior to flowering \tn % Row Count 19 (+ 2) % Row 5 \SetRowColor{white} Stage I: Initiation stage & 1. Explant isolated is surface sterilized and transferred into nutrient medium \tn % Row Count 23 (+ 4) % Row 6 \SetRowColor{LightBackground} & 2. Combined application of bactericide and fungicide (generally) \tn % Row Count 27 (+ 4) % Row 7 \SetRowColor{white} & 3. Cultures are incubated in growth chamber either under light or dark conditions according to the method of propagation \tn % Row Count 33 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. Histogenesis (Micropropagation) (cont)}} \tn % Row 8 \SetRowColor{LightBackground} & *disinfectants: sodium hypochlorite, calcium hypochlorite, ethanol, mercuric chloride (HgCl2) \tn % Row Count 5 (+ 5) % Row 9 \SetRowColor{white} Stage II: Multiplication stage & -aim: increase the number of propagules \tn % Row Count 7 (+ 2) % Row 10 \SetRowColor{LightBackground} & -number of propagules is multiplied by repeated subcultures until the desired (or planned) number of plants is attained \tn % Row Count 13 (+ 6) % Row 11 \SetRowColor{white} & -repeated enhanced formation of axillary shoots from shoot tips or lateral buds \tn % Row Count 17 (+ 4) % Row 12 \SetRowColor{LightBackground} & -4-8 weeks subculturing intervals (1 cycle) \tn % Row Count 20 (+ 3) % Row 13 \SetRowColor{white} & -multiplication is very labor-intensive \tn % Row Count 22 (+ 2) % Row 14 \SetRowColor{LightBackground} & 1. Higher concentration of cytokinin provided \tn % Row Count 25 (+ 3) % Row 15 \SetRowColor{white} & 2. Lower concentration of auxin provided \tn % Row Count 27 (+ 2) % Row 16 \SetRowColor{LightBackground} & 3. Gibberellins (GA's) may be added to promote etiolation, especially in species that form rosettes. \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. Histogenesis (Micropropagation) (cont)}} \tn % Row 17 \SetRowColor{LightBackground} Stage III: Rooting stage & 1. Plants must be rooted by using media containing auxin or by dipping explant bases in auxin solutions. \tn % Row Count 5 (+ 5) % Row 18 \SetRowColor{white} & a) may use the same culture media used in multiplication stage \tn % Row Count 8 (+ 3) % Row 19 \SetRowColor{LightBackground} & b) sometimes, it is necessary to change media, including nutritional modification and growth regulator composition to induce rooting and the development of strong root growth \tn % Row Count 17 (+ 9) % Row 20 \SetRowColor{white} & 2. Higher concentration of auxin provided \tn % Row Count 19 (+ 2) % Row 21 \SetRowColor{LightBackground} & 3. Lower concentration of cytokinin provided \tn % Row Count 22 (+ 3) % Row 22 \SetRowColor{white} Stage IV: Acclimatization Stage & -aim: in vitro plants need to be weaned and hardened by undergoing acclimatization \tn % Row Count 26 (+ 4) % Row 23 \SetRowColor{LightBackground} & 1. Microshoots are moved from sucrose in jar (heterotrophic stage) to photosynthesis (photoautotrophic stage) \tn % Row Count 32 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. Histogenesis (Micropropagation) (cont)}} \tn % Row 24 \SetRowColor{LightBackground} & 2. Increasing the light intensity (to harden the plants) \tn % Row Count 3 (+ 3) % Row 25 \SetRowColor{white} & 3. reducing sugar, inorganic salts and humidity (to harden the plants) \tn % Row Count 7 (+ 4) % Row 26 \SetRowColor{LightBackground} & 4. The plants are then transferred to an appropriate substrate (sand, peat, compost etc.) and gradually hardened under greenhouse \tn % Row Count 14 (+ 7) % Row 27 \SetRowColor{white} & *Medium must be removed prior to transplantation to prevent contamination. \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Micropropagation Flow Chart}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650531062_Screenshot 2022-04-21 164949.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Conventional propagation vs Micropropagation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650531158_Screenshot 2022-04-21 165156.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{**2. Organogenesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-refers to the production of adventitious plant organs i.e. roots, shoots and leaves that may arise directly from the meristem or indirectly from the undifferentiated cell masses (callus)} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-ability of non-meristematic plant tissues to form various organs} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-production of roots, shoots or leaves} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-organs may arise out of pre-existing meristems or out of differentiated cells} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{-may involve a callus intermediate but often occurs without callus} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{-involves the callus production and differentiation of adventitious meristems into organs by altering the concentration of plant growth hormones in nutrient medium} \tn % Row Count 15 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 15 (+ 0) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Type of Organogenesis} \tn % Row Count 16 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{1. Direct Organogenesis} \tn % Row Count 17 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{a) Directly from an explant} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{b) Axillary bud formation and growth} \tn % Row Count 19 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{2. Indirect organogenesis} \tn % Row Count 20 (+ 1) % Row 12 \SetRowColor{LightBackground} a) Callus culture & 1) Dedifferentiation - less committed, more plastic developmental state \tn % Row Count 24 (+ 4) % Row 13 \SetRowColor{white} & 2) Induction - Cells become organogenically competent and fully determined for primordia production \tn % Row Count 29 (+ 5) % Row 14 \SetRowColor{LightBackground} & 3) Differentiation \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{**2. Organogenesis (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) % Row 16 \SetRowColor{white} Characteristics & -relies on the inherent plasticity of plant tissues, and is regulated by altering the components of the medium \tn % Row Count 6 (+ 6) % Row 17 \SetRowColor{LightBackground} & -auxin to cytokinin ratio determines which developmental pathway \tn % Row Count 10 (+ 4) % Row 18 \SetRowColor{white} & -induce shoot formation by increasing the cytokinin to auxin ratio of the culture medium. \tn % Row Count 15 (+ 5) % Row 19 \SetRowColor{LightBackground} & -these shoots can then be rooted relatively simply \tn % Row Count 18 (+ 3) % Row 20 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 18 (+ 0) % Row 21 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Control of Organogenesis} \tn % Row Count 19 (+ 1) % Row 22 \SetRowColor{white} 1. Auxin: Stimulates Root Development & {\emph{-↑ Auxin ↓Cytokinin = Root Development}} \tn % Row Count 22 (+ 3) % Row 23 \SetRowColor{LightBackground} 2. Cytokinin: Stimulates Shoot Development & {\emph{-↑ Cytokinin ↓Auxin = Shoot Development }} \tn % Row Count 25 (+ 3) % Row 24 \SetRowColor{white} & {\emph{- Auxin = Cytokinin = Callus Development}} \tn % Row Count 28 (+ 3) % Row 25 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 28 (+ 0) % Row 26 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Advantage} \tn % Row Count 29 (+ 1) % Row 27 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{1. Mass multiplication of elite germplasm.} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{**2. Organogenesis (cont)}} \tn % Row 28 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{2. Source material for protoplast work or genetic transformation} \tn % Row Count 2 (+ 2) % Row 29 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{3. Conservation of endangered genotypes} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{*Organogenesis may not produce clones!} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Organogenesis Flow Chart}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650554861_Screenshot 2022-04-21 165501.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Organogenesis Process}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650554895_Screenshot 2022-04-21 221814.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{3. Somatic Embryogenesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{-in vitro method of plant regeneration widely used as an important biotechnological tool for sustained clonal propagation} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{-process by which somatic cells or tissues develop into differentiated embryos, then develop into whole plants without undergoing the process of sexual fertilization} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{-Plant growth regulators play an important role in the regeneration and proliferation of somatic embryos} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{-usually involves a callus intermediate stage which can result in variation among seedlings} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{A) Plant regeneration via somatic embryogenesis occurs by the induction of embryogenic cultures from zygotic seed, leaf or stem segment and further multiplication of embryos} \tn % Row Count 16 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{B) Mature embryos are then cultured for germination and plantlet development, and finally transferred to soil} \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{} \tn % Row Count 19 (+ 0) % Row 7 \SetRowColor{white} 1. Direct Somatic \seqsplit{Embryogenesis} & -Embryos initiate directly from explant in the absence of callus formation. & \tn % Row Count 25 (+ 6) % Row 8 \SetRowColor{LightBackground} & -Though common from some tissues (usually reproductive tissues such as the nucellus, styles or pollen), direct somatic \seqsplit{embryogenesis} is generally rare & \tn % Row Count 37 (+ 12) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{3. Somatic Embryogenesis (cont)}} \tn % Row 9 \SetRowColor{LightBackground} 2. Indirect Somatic \seqsplit{Embryogenesis} & -Embryos initiate from callus developed from explant & \tn % Row Count 4 (+ 4) % Row 10 \SetRowColor{white} & Explant → Callus induction → Callus Embryogenic development → Maturation → Germination & \tn % Row Count 12 (+ 8) % Row 11 \SetRowColor{LightBackground} & 1) Initial stage (embryo initiation) & high \seqsplit{concentration} of 2,4-Dichlorophenoxyacetic acid (selective herbicide) is used \tn % Row Count 19 (+ 7) % Row 12 \SetRowColor{white} & 2) Second stage (embryo production) & embryos are produced in a medium with no or very low levels of 2,4-D \tn % Row Count 25 (+ 6) % Row 13 \SetRowColor{LightBackground} & & *supplying a source of reduced nitrogen (specific amino acids/casein hydrolysate) can also improve \tn % Row Count 33 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{3. Somatic Embryogenesis (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) % Row 15 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{- also regarded as a valuable tool for genetic manipulation} \tn % Row Count 2 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{-The process can also be used to develop the plants that are resistant to various kinds of stresses and to introduce the genes by genetic transformation. adventitious} \tn % Row Count 6 (+ 4) % Row 17 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{} \tn % Row Count 6 (+ 0) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{Various terms for non-zygotic embryos} \tn % Row Count 7 (+ 1) % Row 19 \SetRowColor{white} 1. Adventitious embryos & Somatic embryos arising directly from other organs or embryos. & \tn % Row Count 12 (+ 5) % Row 20 \SetRowColor{LightBackground} 2. \seqsplit{Parthenogenetic} embryos & Somatic embryos are formed by the unfertilized egg. & \tn % Row Count 16 (+ 4) % Row 21 \SetRowColor{white} 3. Androgenetic embryos & Somatic embryos are formed by the male gametophyte. & \tn % Row Count 20 (+ 4) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{} \tn % Row Count 20 (+ 0) % Row 23 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{Somatic Embryo Development} \tn % Row Count 21 (+ 1) % Row 24 \SetRowColor{LightBackground} -Auxin must be removed for embryo development & Continued use of auxin inhibits \seqsplit{embryogenesis} & \tn % Row Count 25 (+ 4) % Row 25 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{-Polarity is established early in embryo development.} \tn % Row Count 27 (+ 2) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{-Signs of tissue differentiation become apparent at the globular stage and apical meristems are apparent in heart-stage embryos.} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{3. Somatic Embryogenesis (cont)}} \tn % Row 27 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{Development Stages} \tn % Row Count 1 (+ 1) % Row 28 \SetRowColor{white} 1. Zygote & 4. Torpedo & \tn % Row Count 2 (+ 1) % Row 29 \SetRowColor{LightBackground} 2. Globular & 5. Cotyledonary & \tn % Row Count 4 (+ 2) % Row 30 \SetRowColor{white} 3. Heart & 6. Germination & \tn % Row Count 6 (+ 2) % Row 31 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{} \tn % Row Count 6 (+ 0) % Row 32 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{Characteristics} \tn % Row Count 7 (+ 1) % Row 33 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{1. Bipolar structure – shoot and root pole} \tn % Row Count 8 (+ 1) % Row 34 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{2. Source of protoplasts and suspension cultures.} \tn % Row Count 9 (+ 1) % Row 35 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{3. Clonal propagation} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Somatic Embryogenesis Process}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650554974_Screenshot 2022-04-21 225234.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Somatic Embryo Development Stages}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/woozing_1650555022_Screenshot 2022-04-21 225903.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Embryogenesis, Organogenesis, Micropropagation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-Both of these technologies can be used as methods of micropropagation.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{-It is not always desirable because both of them may not always result in populations of identical plants which is needed for micropropagtion.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{-The most beneficial use of somatic embryogenesis and organogenesis is in the production of whole plants from a single cell (or a few cells).} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{a) High probability of mutations} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{b) The method is usually rather difficult.} \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{c) Losing regenerative capacity become greater with repeated subculture} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{d) Induction of embryogenesis is very difficult with many plant species} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{e) A deep dormancy often occurs with somatic embryogenesis} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Difference of S. Embryogenesis and Organogenesis}} \tn % Row 0 \SetRowColor{LightBackground} Organogenesis & Somatic Embryogenesis \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} -monopolar structure & -bipolar structure with a closed radicular end \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} -has vascular connection with the mother tissue & -has no vascular connection with the mother tissue \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Compare Organogenesis and Embryogenesis}} \tn % Row 0 \SetRowColor{LightBackground} Organogenesis & Embryogenesis \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} -Explant or callus is subcultured on shooting medium to induce shoot formation & -Explant or callus is subcultured on embryogenesis medium to induce formation of pro-embryogenic cell masses (PEMs) \tn % Row Count 7 (+ 6) % Row 2 \SetRowColor{LightBackground} -Group of cells differentiate to form shoots (5,000-10,000) & -PEMs are form from single cells and subcultured into the same medium for PEM proliferation (hundred thousands to million) \tn % Row Count 14 (+ 7) % Row 3 \SetRowColor{white} -Each shoot of appropriate size is identified and excised individually and subculture on rooting medium to induce rooting (labour intensive) & -PEMs are split and subcultured onto medium with less auxin in batches (less labour) to grow and differentiate further \tn % Row Count 21 (+ 7) % Row 4 \SetRowColor{LightBackground} & -Somatic embryos are subcultured on medium without hormone for germination \tn % Row Count 25 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.204 cm} x{2.736 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Different problems in Plant tissue culture}} \tn % Row 0 \SetRowColor{LightBackground} Problem & Description & Way to Overcome \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1. \seqsplit{Recalcitrance} & -inability of plant tissue culture to respond to culture manipulation & -Antioxidant Protection: Antioxidants are special compounds that have the capability of neutralizing reactive molecules and particles - so called free radicals \tn % Row Count 14 (+ 12) % Row 2 \SetRowColor{LightBackground} & -loss of morphogenetic competence and totipotency capacity & -Juvenile tissue can be selected as explant \tn % Row Count 19 (+ 5) % Row 3 \SetRowColor{white} & -Free \seqsplit{radical-mediated} stress has a role in tissue culture \seqsplit{recalcitrance.} & -Parts of the desired plant rejuvenated by treatments like cytokinin spray on selected branches \tn % Row Count 26 (+ 7) % Row 4 \SetRowColor{LightBackground} & -Free radicals and their reaction products react with \seqsplit{macromolecules} such as DNA, proteins and enzymes, causing cellular dysfunction and, as a result, the cultures become recalcitrant & - \tn % Row Count 40 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.204 cm} x{2.736 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Different problems in Plant tissue culture (cont)}} \tn % Row 5 \SetRowColor{LightBackground} & -All aerobic organisms are totally dependent upon redox reactions and the transfer of single electrons and many life processes involve free radical \seqsplit{intermediates.} & - \tn % Row Count 12 (+ 12) % Row 6 \SetRowColor{white} 2. \seqsplit{Contamination} & -source: a) carry over of \seqsplit{microorganisms} on the surface or in the tissues of explants; b) faulty procedures in the laboratory & -Wear gloves and a lab coat and keep long hair tied back. \tn % Row Count 21 (+ 9) % Row 7 \SetRowColor{LightBackground} & -Bacteria, fungi, mould and yeasts are common contaminating \seqsplit{microorganisms} in tissue culture. & -Work in a laminar flow hood when passaging cells. \tn % Row Count 28 (+ 7) % Row 8 \SetRowColor{white} & -Many of the \seqsplit{microorganisms} that are likely to be present intercellular, in plant tissues will be capable of growth on the plant tissue culture medium, although some may be inhibited by the high salt or sucrose concentration and the pH & -Wipe down working surfaces with ethanol. \tn % Row Count 45 (+ 17) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.204 cm} x{2.736 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Different problems in Plant tissue culture (cont)}} \tn % Row 9 \SetRowColor{LightBackground} & & -Use sterile equipment. \tn % Row Count 2 (+ 2) % Row 10 \SetRowColor{white} & & -Inspect all equipment and media for visible contamination before use. \tn % Row Count 7 (+ 5) % Row 11 \SetRowColor{LightBackground} & & -NO cross over - Do not pass your hands/arms over any open bottle, plate or tube. \tn % Row Count 13 (+ 6) % Row 12 \SetRowColor{white} & & -Use proper antibiotics in your culture media. \tn % Row Count 17 (+ 4) % Row 13 \SetRowColor{LightBackground} & & -When finished, dispose of materials properly, wipe down working surfaces with ethanol, and turn on UV lamp within laminar flow hood for 10 minutes to sterilize the area. \tn % Row Count 30 (+ 13) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.204 cm} x{2.736 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Different problems in Plant tissue culture (cont)}} \tn % Row 14 \SetRowColor{LightBackground} 3. Phenolic browning & -Many plants are naturally rich in polyphenolic compounds that are commonly regarded as inhibitory agents. & -Culture bottles are kept in dark condition \tn % Row Count 8 (+ 8) % Row 15 \SetRowColor{white} & -In most of the cases, when these plants are cultured in vitro, the culture medium turns brown. & -Addition of antioxidants \seqsplit{(Polyvinylpyrrolidone}, PVP-40) to medium was more effective to reduce the browning. \tn % Row Count 16 (+ 8) % Row 16 \SetRowColor{LightBackground} & -Phenolic browning caused by the accumulation and oxidation of phenolic compounds. & -inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds \tn % Row Count 26 (+ 10) % Row 17 \SetRowColor{white} 4. Seasonal variation & -relative humidity, dry season affects the medium and nutrient medium evaporates rapidly when too dry & -Choose explant in its most responsive season \tn % Row Count 34 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.204 cm} x{2.736 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Different problems in Plant tissue culture (cont)}} \tn % Row 18 \SetRowColor{LightBackground} & -extreme moist climate such as poor tropical region, fungi is effected on media & -Use in vitro plantlets as explant \tn % Row Count 6 (+ 6) % Row 19 \SetRowColor{white} & -dust in air is also a major source of bacterial contaminants & -Controlled environment \tn % Row Count 11 (+ 5) % Row 20 \SetRowColor{LightBackground} & -germination of shoots and roots also delayed due to the seasonal variation & - \tn % Row Count 17 (+ 6) % Row 21 \SetRowColor{white} 5. \seqsplit{Vitrification(} \seqsplit{hyperhydricity)} & \seqsplit{Hyperhydricity} is the physiological malformation due to excessive hydration, low lignification and reduced mechanical strength of tissue culture generated plants. & -Culture are sub-cultured frequently to overcome this vitrification \tn % Row Count 29 (+ 12) % Row 22 \SetRowColor{LightBackground} & \seqsplit{Hyperhydricity} in plant tissue cultures are those factors triggering oxidative stresses such as high salt concentration, low calcium content in culture medium, gas built up within the container, high relative humidity, low light intensity, gas accumulation in the atmosphere of the jar, length of time intervals between \seqsplit{subcultures.High} ammonium concentration, culture bottles kept in same container. & \seqsplit{-Vitrification} can be lessen by raising the agar and/or sugar concentration, addition of \seqsplit{ethylene-inhibitors}, amino acid, phenolic glycosides phloridzin, naringin or esculin hydate, using two-phase media, bottom cooling of the culture vessels,ventilation of the vessels, adding silver nitrate \tn % Row Count 58 (+ 29) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.204 cm} x{2.736 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Different problems in Plant tissue culture (cont)}} \tn % Row 23 \SetRowColor{LightBackground} 6. Somaclonal Variation & -genetic variations along with phenotypic changes found in the in vitro cultured cells & -Avoiding long term cultures \tn % Row Count 7 (+ 7) % Row 24 \SetRowColor{white} & -Somaclonal variations occur as a result of genetic heterogeneity (change in chromosome number and/or structure) in plant tissue cultures. & -Axillary shoot induction systems \tn % Row Count 17 (+ 10) % Row 25 \SetRowColor{LightBackground} & -cause: a) Expression of chromosomal mosaicism or genetic disorders; b) ii. Spontaneous mutations due to culture conditions & -Regularly reinitiating clones from new explants. \tn % Row Count 26 (+ 9) % Row 26 \SetRowColor{white} & -factors: a) Genotype and explant source; b)Duration of cell culture; c) Growth hormone effects & -Prevent usage of 2,4-D IN media \tn % Row Count 33 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Limitations of Somaclonal Variations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{i. Most of the somaclonal variations may not be useful.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{ii. The variations occur in an unpredictable and uncontrolled manner.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{iii. Many a times the genetic traits obtained by somaclonal variations are not stable and heritable.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{iv. Somaclonal variations are cultivar-dependent which is frequently a time consuming process.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{v. Somaclones can be produced in only those species which regenerate to complete plants.} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{vi. Many cell lines (calli) may not exhibit regeneration potential.} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Nodal Cutting}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Function: Removes the inhibitory effect of the shoot apex on bud outgrowth (Apical dominance)} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Nodal Cutting Image}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Image could not be loaded.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Gibberellins}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Growth hormones that stimulate cell elongation and cause plants to grow taller.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rosette}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Circular arrangement of leaves or of structures resembling leaves} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Etiolation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Etiolation is a process in flowering plants grown in partial or complete absence of light.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color.} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}