PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/

Regeneration Ability of an Explant		1. Histogene	esis (Micropropagation) (cont)
depends on:			-collection prior to flowering
1. Organ from which	it is derived	Stage I:	1. Explant isolated is surface sterilized and transferred
2. The physiological cells in the cell cycle	state of explant/ Differences in the stage of the	Initiation stage	into nutrient medium
3. Size of the explan	t		2. Combined application of bactericide and fungicide
4. Orientation of the	explant on the medium		(generally)
5. Inoculation density	4		3. Cultures are incubated in growth chamber either
	ty to transport endogenous growth regulators		under light or dark conditions according to the method of propagation
7. Metabolic capabilities of the cells			*disinfectants: sodium hypochlorite, calcium hypoch-
			lorite, ethanol, mercuric chloride (HgCl2)
Plant Regeneration I 1. Histogenesis (Micropropagation;	Uses meristematic cells to regenerate whole plant (shoot culture/nodal culture)	Stage II: Multiplic- ation stage	-aim: increase the number of propagules
Pre-existing Meristems)			-number of propagules is multiplied by repeated
2. Organogenesis	Relies on the production of organs either		subcultures until the desired (or planned) number of plants is attained
3. Somatic	directly from an explant or callus structure Embryo-like structures which can develop into		-repeated enhanced formation of axillary shoots from shoot tips or lateral buds
Embryogenesis	whole plants in a way that is similar to zygotic		-4-8 weeks subculturing intervals (1 cycle)
	embryos are formed from somatic cells		-multiplication is very labor-intensive
1. Histogenesis (Micropropagation)			1. Higher concentration of cytokinin provided
-most commonly used tissue explants are the meristematic ends of			2. Lower concentration of auxin provided
the plants like the stem tip, auxillary bud tip & root tip			
-these tissues have high rates of cell division & produce required growth regulating substances including auxins & cytokinin			

Stage 0:-if possible, mother plant should be ex vitroPreparationcultivated under optimal conditions to minimizeof donorcontamination in the in vitro cultureplant

-explant should be selected from young and healthy part that actively grow

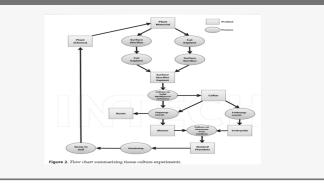
С

By woozing

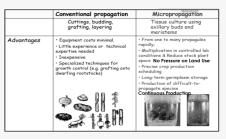
cheatography.com/woozing/

Not published yet. Last updated 28th April, 2022. Page 1 of 8.

PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/


1. Histoge	enesis (Micropropagation) (cont)
	3. Gibberellins (GA's) may be added to promote etiola- tion, especially in species that form rosettes.
Stage III: Rooting stage	1. Plants must be rooted by using media containing auxin or by dipping explant bases in auxin solutions.
	a) may use the same culture media used in multiplication stage
	b) sometimes, it is necessary to change media, including nutritional modification and growth regulator composition to induce rooting and the development of strong root growth
	2. Higher concentration of auxin provided
	3. Lower concentration of cytokinin provided
Stage IV: Acclim- atization Stage	-aim: in vitro plants need to be weaned and hardened by undergoing acclimatization
	1. Microshoots are moved from sucrose in jar (heterotr- ophic stage) to photosynthesis (photoautotrophic stage)
	2. Increasing the light intensity (to harden the plants)
	3. reducing sugar, inorganic salts and humidity (to harden the plants)

1. Histogenesis (Micropropagation) (cont)


4. The plants are then transferred to an appropriate substrate (sand, peat, compost etc.) and gradually hardened under greenhouse

*Medium must be removed prior to transplantation to prevent contamination.

Micropropagation Flow Chart

Conventional propagation vs Micropropagation

**2. Organogenesis

-refers to the production of adventitious plant organs i.e. roots, shoots and leaves that may arise directly from the meristem or indirectly from the undifferentiated cell masses (callus)

-ability of non-meristematic plant tissues to form various organs

-production of roots, shoots or leaves

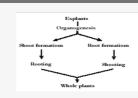
-organs may arise out of pre-existing meristems or out of differentiated cells

-may involve a callus intermediate but often occurs without callus

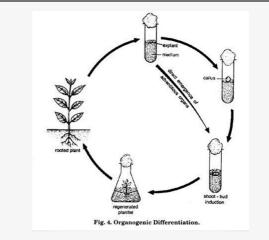
-involves the callus production and differentiation of adventitious meristems into organs by altering the concentration of plant growth hormones in nutrient medium

Type of Organogenesis

1. Direct Organogenesis


By woozing cheatography.com/woozing/ Not published yet. Last updated 28th April, 2022. Page 2 of 8.

PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/


a) Directly from an explant	
b) Axillary bud formation and growth	
2. Indirect organogenesis	
a) Callus culture 1) Dedifferentiation - less committed, more plastic developmental state	e
 Induction - Cells become organogenica competent and fully determined for primor production 	5
3) Differentiation	
Characteristics -relies on the inherent plasticity of plant tis and is regulated by altering the componen the medium	
-auxin to cytokinin ratio determines which developmental pathway	
-induce shoot formation by increasing the cytokinin to auxin ratio of the culture media	um.
-these shoots can then be rooted relatively simply	y
Control of Organogenesis	
1. Auxin: -↑ Auxin ↓ Cytokinin = Root Development Stimulates Root Development	
2. Cytokinin: $-\uparrow$ Cytokinin \downarrow Auxin = Shoot Development	nt

- Auxin = Cytokinin = Callus Development

Organogenesis Flow Chart

Organogenesis Process

3. Somatic Embryogenesis

-in vitro method of plant regeneration widely used as an important biotechnological tool for sustained clonal propagation

-process by which somatic cells or tissues develop into differentiated embryos, then develop into whole plants without undergoing the process of sexual fertilization

-Plant growth regulators play an important role in the regeneration and proliferation of somatic embryos

-usually involves a callus intermediate stage which can result in variation among seedlings

A) Plant regeneration via somatic embryogenesis occurs by the induction of embryogenic cultures from zygotic seed, leaf or stem segment and further multiplication of embryos

B) Mature embryos are then cultured for germination and plantlet development, and finally transferred to soil

1. Direct Somatic-Embryos initiate directly from explant in theEmbryogenesisabsence of callus formation.

С

Stimulates Shoot Development

1. Mass multiplication of elite germplasm.

3. Conservation of endangered genotypes

*Organogenesis may not produce clones!

Advantage

By woozing cheatography.com/woozing/

2. Source material for protoplast work or genetic transformation

Not published yet. Last updated 28th April, 2022. Page 3 of 8.

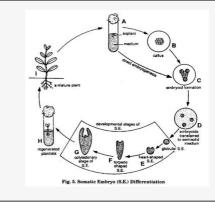
PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/

3. Somatic E	Embryogenesis (cont)	3
	0	non from some tissues (usually reprod- such as the nucellus, styles or pollen),	۷ 1
	direct somatic	embryogenesis is generally rare	
2. Indirect Somatic	-Embryos initiate from callus developed from explant		2
Embryo- genesis			3
	·	us induction → Callus Embryogenic → Maturation → Germination	S
	1) Initial	high concentration of 2,4-Dichlorophe-	-,
	stage (embryo	noxyacetic acid (selective herbicide) is used	е
	initiation)		-1
	2) Second	embryos are produced in a medium	-: a
	stage (embryo	with no or very low levels of 2,4-D	C
	production)		1
		*supplying a source of reduced	2
		nitrogen (specific amino acids/casein hydrolysate) can also improve	3

- also regarded as a valuable tool for genetic manipulation

-The process can also be used to develop the plants that are resistant to various kinds of stresses and to introduce the genes by genetic transformation. adventitious

3. Somatic Embryogenesis (cont)


,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Various terms for non-zygotic	embryos			
1. Adventitious embryos	Somatic embryos arising directly from other organs or embryos.			
2. Parthenogenetic embryos	Somatic embryos are formed by the unfertilized egg.			
3. Androgenetic embryos	Somatic embryos are formed by the male gametophyte.			
Somatic Embryo Development	t			
-Auxin must be removed for embryo development	Continued use of auxin inhibits embryogenesis			
-Polarity is established early in embryo development.				
-Signs of tissue differentiation become apparent at the globular stage and apical meristems are apparent in heart-stage embryos.				
Development Stages				
1. Zygote	4. Torpedo			
2. Globular	5. Cotyledonary			

3. Heart 6. Germination

Characteristics

- 1. Bipolar structure shoot and root pole
- 2. Source of protoplasts and suspension cultures.
- 3. Clonal propagation

Somatic Embryogenesis Process

C

By woozing cheatography.com/woozing/ Not published yet. Last updated 28th April, 2022. Page 4 of 8.

PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/

Somatic Embryo Development Stages

Embryogenesis, Organogenesis, Micropropagation

-Both of these technologies can be used as methods of micropropagation.

-It is not always desirable because both of them may not always result in populations of identical plants which is needed for micropropagtion.

-The most beneficial use of somatic embryogenesis and organogenesis is in the production of whole plants from a single cell (or a few cells).

a) High probability of mutations

b) The method is usually rather difficult.

c) Losing regenerative capacity become greater with repeated subculture

d) Induction of embryogenesis is very difficult with many plant species

e) A deep dormancy often occurs with somatic embryogenesis

Difference of S. Embryogenesis and Organogenesis

Organogenesis	Somatic Embryogenesis
-monopolar structure	-bipolar structure with a closed radicular end
-has vascular connection with the mother tissue	-has no vascular connection with the mother tissue

Compare Organogenesis and Embryogenesis

Organogenesis	Embryogenesis
-Explant or callus is	-Explant or callus is subcultured on
subcultured on shooting	embryogenesis medium to induce
medium to induce shoot	formation of pro-embryogenic cell
formation	masses (PEMs)

By woozing

cheatography.com/woozing/

Not published yet. Last updated 28th April, 2022. Page 5 of 8.

Compare Organogenesis and Embryogenesis (cont)

-Group of cells differentiate to form shoots (5,000-10,000)	-PEMs are form from single cells and subcultured into the same medium for PEM prolif- eration (hundred thousands to million)
-Each shoot of appropriate size is identified and excised individually and subculture on rooting medium to induce rooting (labour intensive)	-PEMs are split and subcul- tured onto medium with less auxin in batches (less labour) to grow and differentiate further
	-Somatic embryos are subcul- tured on medium without hormone for germination

Different problems in Plant tissue culture				
Problem	Description	Way to Overcome		
1. Recalc- itrance	-inability of plant tissue culture to respond to culture manipu- lation	-Antioxidant Protection: Antioxidants are special compounds that have the capability of neutralizing reactive molecules and particles - so called free radicals		
	-loss of morphogenetic competence and totipotency capacity	-Juvenile tissue can be selected as explant		
	-Free radical-m- ediated stress has a role in tissue culture recalcitrance.	-Parts of the desired plant rejuvenated by treatments like cytokinin spray on selected branches		

PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/

Different problems in Plant tissue culture (cont)			Different problems in Plant tissue culture (cont)		
	-Free radicals and their reaction products react with macromolecules such as DNA, proteins and enzymes, causing cellular dysfunction and, as a result, the cultures become recalcitrant	-	-Many of the microorganisms that are likely to be present intercellular, in plant tissues will be capable of growth on the plant tissue culture medium, although some may be inhibited by the high salt or sucrose concentration and the pH	-Wipe down working surfaces with ethanol.	
	-All aerobic organisms are totally dependent upon redox reactions and the transfer of single electrons and many life processes involve free radical intermedi- ates Second second2source: a) carry over of microorganisms on the surface or in the tissues of explants; b) faulty procedures in the laboratory-Wearalab coat and keep long hair-Wear	-			
				-Use sterile equipment.	
2			-Inspect all equipment and media for visible contam- ination before use.		
Contam			-NO cross over - Do not pass your hands/arms over any open bottle, plate or tube.		
	-Bacteria, fungi, mould and yeasts are	tied back. -Work in a		-Use proper antibiotics in your culture media.	
	common contaminating microorganisms in tissue culture.	laminar flow hood when passaging cells.		-When finished, dispose of materials properly, wipe down working surfaces with ethanol, and turn on UV lamp within laminar flow hood for 10 minutes to sterilize the area.	

By we cheat

By woozing

cheatography.com/woozing/

Not published yet. Last updated 28th April, 2022. Page 6 of 8.

PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/

Different p	roblems in Plant tissue cult	ure (cont)	Differen	t problems in Plant tissue culture (co	ont)
3. Phenolic browning	-Many plants are naturally rich in polyph- enolic compounds that	-Culture bottles are kept in dark condition		-germination of shoots and roots also delayed due to the seasonal variation	-
	are commonly regarded as inhibitory agents.		5. Vitrif-	Hyperhydricity is the physio- logical malformation due to	-Culture are sub-cu- Itured frequently to
	-In most of the cases, when these plants are cultured in vitro, the culture medium turns brown.	-Addition of antioxidants (Polyvinylpyrrolidone, PVP- 40) to medium was more effective to reduce the browning.	ica- tion(hyperh ydr- icity)	excessive hydration, low lignif- ication and reduced mechanical strength of tissue culture generated plants.	overcome this vitrif- ication
	-Phenolic browning caused by the accumu- lation and oxidation of phenolic compounds.	-inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds		Hyperhydricity in plant tissue cultures are those factors triggering oxidative stresses such as high salt concentration, low calcium content in culture	-Vitrification can be lessen by raising the agar and/or sugar concentration, addition of ethylene-inhibitors,
4. Seasonal variation	-relative humidity, dry season affects the medium and nutrient medium evaporates rapidly when too dry	-Choose explant in its most responsive season	conta low lig lation jar, le betwe ammo cultur	medium, gas built up within the container, high relative humidity, low light intensity, gas accumu- lation in the atmosphere of the jar, length of time intervals	amino acid, phenolic glycosides phloridzin, naringin or esculin hydate, using two- phase media, bottom
	-extreme moist climate such as poor tropical region, fungi is effected on media	-Use in vitro plantlets as explant		between subcultures.High ammonium concentration, culture bottles kept in same container.	cooling of the culture vessels,ventilation of the vessels, adding silver nitrate
	-dust in air is also a major source of bacterial contaminants	-Controlled environment			

By woozing

cheatography.com/woozing/

Not published yet. Last updated 28th April, 2022. Page 7 of 8.

PLANT & TISSUE CULTURE - C2 (Regeneration Pathway) Cheat Shee by woozing via cheatography.com/146689/cs/31782/

Different prot	olems in Plant tissue culture (cont)	
6. Somaclonal Variation	-genetic variations along with phenotypic changes found in the in vitro cultured cells	-Avoiding long term cultures
	-Somaclonal variations occur as a result of genetic heterogeneity (change in chromosome number and/or structure) in plant tissue cultures.	-Axillary shoot induction systems
	-cause: a) Expression of chromosomal mosaicism or genetic disorders; b) ii. Spontaneous mutations due to culture conditions	-Regularly reinitiating clones from new explants.
	-factors: a) Genotype and explant source; b)Duration of cell culture; c) Growth hormone effects	-Prevent usage of 2,4-D IN media

Limitations of Somaclonal Variations

i. Most of the somaclonal variations may not be useful.

ii. The variations occur in an unpredictable and uncontrolled manner.

iii. Many a times the genetic traits obtained by somaclonal variations are not stable and heritable.

iv. Somaclonal variations are cultivar-dependent which is frequently a time consuming process.

v. Somaclones can be produced in only those species which regenerate to complete plants.

vi. Many cell lines (calli) may not exhibit regeneration potential.

By woozing

cheatography.com/woozing/

Not published yet. Last updated 28th April, 2022. Page 8 of 8.

Nodal Cutting

Function: Removes the inhibitory effect of the shoot apex on bud outgrowth (Apical dominance)

Nodal Cutting Image

Gibberellins

Growth hormones that stimulate cell elongation and cause plants to grow taller.

Rosette

Circular arrangement of leaves or of structures resembling leaves

Etiolation

Etiolation is a process in flowering plants grown in partial or complete absence of light.

It is characterized by long, weak stems; smaller leaves due to longer internodes; and a pale yellow color.