
JS interview Cheat Sheet
by wkerswell via cheatography.com/27961/cs/8223/

Closures

Function body has access to variables
defined outside its scope

Closure is when a function is able to
remember and access its lexical scope even
when that function is executing outside its
lexical scope.

Useful in callbacks. For example passing a
value into an ajax success. Var can be
defined before the call and still accessed
from the success

Higher order funtions

Functions that accept other functions as
their arguments.

EG .map or .filter

Can help to write code quicker with less
bugs due to code reuse

Recursion

When a function calls its self until it doesn't

An example would be when you have a
bunch categories form a DB and you want
to map all the children into a tree structure.

Destru ​cturing

Break and object or array into variables

Great for options objects like ajax options

Can be put into the function declar ​ation
params with optional values

Prototypal Inheri ​tance

Objects inherit directly from other objects.

Instances may be composed from many
different source objects, allowing for easy
selective inheri ​tance and a flat [[Prot ​otype]]
delegation hierarchy.

The tight coupling problem, Inflexible
hierarchy problem

The Gorill ​a/b ​anana problem (What you
wanted was a banana, but what you got
was a gorilla holding the banana, and the
entire jungle)

Delegation

Factory functions

Factories - Functions that create objects
and return them.

Better to use than classes for Compos ​ition!

Inheri ​tance encourages you to predict the
future of your classes (bad) it will most likely
change though out the project

Compos ​ition

Compos ​ition is simply when a class is
composed of other classes; or to say it
another way, an instance of an object has
references to instances of other objects.

Is better as we dont have to think of all our
classes at the start and when we inevitably
need to change them we can with ease

Eg A robot dog needs the bark from the dog
class but not the sleep.

Currying

Currying is when a function, instead of
taking all arguments at one time, takes the
first one and returns a new function that
takes the second one and returns a new
function which takes the third one, and so
forth, until all arguments have been fulfilled.

The idea is that a function can pass through
an applic ​ation and gradually receive the
parameters it needs

funct ​ion ​('a ​rg1 ​')(​'ar ​g2' ​)(' ​arg3')

Two types of function

Declar ​ation - function something ()
{}

Hoisted to the global scope

Expression - var something =
function (){}

Good to use for passing function into other
function. EG the ajax success or a .map

Objects

�Objects can be thought of as the main
actors ​(th ​ings) in an applic ​ation

Every component in JavaScript is an
Object, including Functions, Strings, and
Numbers

We normally use object literals or constr ​‐
uctor functions to create objects.

By wkerswell
cheatography.com/wkerswell/

Published 24th May, 2016.
Last updated 16th August, 2019.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/wkerswell/
http://www.cheatography.com/wkerswell/cheat-sheets/js-interview
http://www.cheatography.com/wkerswell/
https://readable.com

JS interview Cheat Sheet
by wkerswell via cheatography.com/27961/cs/8223/

Encaps ​ulation

Refers to enclosing all the functi ​ona ​lities of an object within that
object so that the object’s internal workings (its methods and
proper ​ties) are hidden from the rest of the applic ​ation.

This allows us to abstract or localize specific set of functi ​ona ​lities
on objects.

A way to do this would be wrap everything in an Immedi ​ate ​ly- ​‐
Invoked Function Expression IIFE - a way to implement the
module pattern. Allows private methods and data, defining an API
for public use.

OO Javascript

(OOP) refers to using self-c ​ont ​ained pieces of code to develop
applic ​ations

Building applic ​ations with objects allows us to adopt some
valuable techni ​ques, namely, Inheri ​tance

Inheri ​tance

refers to an object being able to inherit methods and properties
from a parent object

Redux/Flux

Uses a Uni-di ​rec ​tional data flow to keep a Single source of truth

The state of your whole applic ​ation is stored in an object tree
within a single store.

State is read-only. The only way to change the state is to emit an
action, an object describing what happened.

State tree is transf ​ormed by actions, written with pure reducers.

By wkerswell
cheatography.com/wkerswell/

Published 24th May, 2016.
Last updated 16th August, 2019.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/wkerswell/
http://www.cheatography.com/wkerswell/cheat-sheets/js-interview
http://www.cheatography.com/wkerswell/
https://readable.com

	JS interview Cheat Sheet - Page 1
	Closures
	Prototypal Inheri­tance
	Currying
	Higher order funtions
	Two types of function
	Factory functions
	Recursion
	Objects
	Compos­ition
	Destru­cturing

	JS interview Cheat Sheet - Page 2
	Encaps­ulation
	OO Javascript
	Inheri­tance
	Redux/Flux

