## Unit 3 VCE Physics Cheat Sheet by WhoooshBooosh via cheatography.com/145977/cs/39132/

| Newton's       | Laws of Motion                                                                                                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First<br>Law:  | Objects have inertia, i.e. a<br>stationary object remains statio-<br>nary, or a moving object keeps on<br>moving at the same speed in the<br>same direction, if there is no net<br>force acting on it |
| Second<br>Law: | Acceleration of an object is<br>directly proportional to and in the<br>same direction as the net force<br>on it, and inversely proportional to<br>its mass.<br>$F_{net} = ma$                         |
| Third<br>Law:  | When object A exerts a force on<br>object B, B exerts a force of the<br>same magnitude in the opposite<br>direction on A.<br>Fon A by B = -Fon B by A                                                 |
| Vector Ar      | Idition                                                                                                                                                                                               |



| SLM Constant Acceleration Equations |                     |  |
|-------------------------------------|---------------------|--|
| Uses:                               | Equation            |  |
| vuat                                | v = u + at          |  |
| vuts                                | s = 1/2 (u + v) t   |  |
| uats                                | $s = ut + 1/2 at^2$ |  |
| vats                                | $s = vt - 1/2 at^2$ |  |
| vuas                                | $v^2 = u^2 + 2as$   |  |

|                        | d - t                                                                                  | v - t                                                   | a-t                                                        |
|------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|
| Direct<br>Reading      | d at any t<br>t at any d                                                               | ν at any<br>t<br>t at any<br>ν                          | <i>a</i> at<br>any <i>t</i><br><i>t</i> at any<br><i>a</i> |
| Gradient               | intsan-<br>taneous<br>velocity at<br>any point<br>Vavg<br>between<br>any two<br>points | instan-<br>taneous<br>accele-<br>ration<br><i>a</i> avg | -                                                          |
| Area<br>under<br>graph | -                                                                                      | change<br>in<br>position                                | change<br>in<br>velocity                                   |
|                        |                                                                                        |                                                         |                                                            |

## Einstein's Special Relativity

| Postulate One                                                                                      | Postulate                                                                                       |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| The Principle of Relativity                                                                        | Two<br>The<br>Constancy of<br>the Speed of<br>Light                                             |
| the laws of physics are<br>the same in all inertial<br>frames of reference (not<br>just mechanics) | <ul> <li>the speed</li> <li>of light is</li> <li>constant for</li> <li>all observers</li> </ul> |
| there is no 'preferred' or<br>'correct' frames of<br>reference                                     | this<br>implies a<br>universal<br>speed limit                                                   |
|                                                                                                    | this has<br>implications<br>of simult-<br>aneity of<br>events                                   |
|                                                                                                    |                                                                                                 |

## Time Dilation

## $t = tO\gamma$ $y = 1 / \sqrt{1 + v^2/c^2}$

to is proper time, t is dilated time (larger than proper time),  $\gamma$  is the Lorentz Factor

## Length Contraction

 $L = L0/\gamma = L0\sqrt{1 - v^2/c^2}$ 

L0 is proper length, L is contracted length (small than proper length), and  $\gamma$  is still Lorentz factor

## Relativistic Energy

• Einstein concluded that it takes energy to make mass, and energy is released if mass disappears. Energy released from nuclear fusion and fission is based on a difference in mass.  $m = relativistic mass \quad \text{and} \quad m_o = rest mass \quad m = m_o \gamma$   $E_{tot} = mc^2 \quad \text{and} \quad E_{rest} = m_o c^2$ •  $E_{tot} = E_k + E_{rest}$  $\begin{aligned} & E_{tot} - E_{\kappa} + S_{rest} \\ & \cdot E_{k} = E_{tot} - E_{rest} \\ & \cdot E_{k} = mc^{2} - m_{o}c^{2} = m_{o}\gamma \ c^{2} - m_{o}c^{2} = (\gamma - 1)m_{o}c^{2} \end{aligned}$ Note 1: As an object approaches c, the mass becomes infinitely large. This would require an infinite force to increase the velocity of an object past the speed of light (ie. it's not possible) Note 2: In the VCAA formula sheet, 'm' represents the rest mass

| $\Phi_B$                                                      | $= \mathbf{B}_{\perp} A = \mathbf{B} A cos \theta$                |                                                                                                 |                                                                              |
|---------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Induced emf (Fara                                             | day's Law of Induction)                                           | Area A                                                                                          |                                                                              |
| $\varepsilon = \frac{-\Delta \Phi_B}{\Delta t}$ $\varepsilon$ | $=\frac{-N\Delta\Phi_B}{\Delta t}$ for more than one los          | DD Magnetic flue is the amount of magnetic flae<br>maximum ΔA; in (c) the value is less, as fee | f passing through an area. In (a) it<br>or field lines pass through the coil |
| Note that the flux i<br>(either the field stre                | needs to be changing over time<br>ength or the area) to induce an | e<br>emf                                                                                        |                                                                              |
| The negative sign<br>induced emf                              | refers to the direction of the                                    |                                                                                                 |                                                                              |
|                                                               |                                                                   |                                                                                                 |                                                                              |



By WhoooshBooosh

Not published yet. Last updated 8th June, 2023. Page 1 of 5.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/whoooshbooosh/

## Unit 3 VCE Physics Cheat Sheet by WhoooshBooosh via cheatography.com/145977/cs/39132/

## Induced EMF and Energy



#### Lenz's Law

Lenz's Law: The magnetic field associated with the induced emf (and current) is <u>opposite</u> in direction to the change in flux

1. What is the direction and change in flux that is happening?

2. What is the direction of the induced field that will oppose the change in flux (or restore the original conditions)?

3. What is the current direction to match the induced field? RH-Grip rule (fingers through the loop)



#### Transformer Equations

| Across step-up and step- | V1 / V2 = N1 / |
|--------------------------|----------------|
| down transformers        | N2 = I2 / I2   |

Where voltage and no. of turns are proportional to each other and current is inversely proportional.



## **Circular Motion**



When an object moves in a circular path its velocity is changing. It therefore experiences an acceleration towards the centre. Centripetal means "centre seeking".

## Centripetal Acceleration

1. Draw diagram showing all forces

2. If required, resolve forces into components

3. There is always a net force towards centre of circular path

Useful equations:

Fnet =  $mv^2/r$ 

 $v = 2\pi r / T$  $a = v^2 / r = 4\pi r^2 / T = 4\pi^2 t^2 r$ 

## Motion at Bottom of Loop





# С

By WhoooshBooosh

Not published yet. Last updated 8th June, 2023. Page 2 of 5.

#### Energ

| Licity                              |                            |
|-------------------------------------|----------------------------|
| Conservation of Energy              | Ek =                       |
| in an isolated system, energy is    | 1/2 <i>mv</i> <sup>2</sup> |
| transformed from one form to        | Eg =                       |
| another, can neither be created     | mg∆h                       |
| nor destroyed                       |                            |
| Hooke's Law                         | Fs = -                     |
| force exerted by spring is directly | k <i>x</i>                 |
| proportional, but opposite in       |                            |
| direction, to the spring's          |                            |
| extension or compression            |                            |
| Strain Potential Energy             | Es =                       |
|                                     | 1/2 <i>k∆x<sup>2</sup></i> |

| Gravity   |                              |
|-----------|------------------------------|
| Newton's  | Gravitation is a force of    |
| Law of    | attraction that acts between |
| Universal | any two bodies. The gravit-  |
| Gravit-   | ational force between two    |
| ation     | bodies is given by:          |
|           | $F = GMm/r^2 = mg$           |

## Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/whoooshbooosh/

## Unit 3 VCE Physics Cheat Sheet by WhoooshBooosh via cheatography.com/145977/cs/39132/

| Gravity (c                                    | ont)                                                                                                                                                                                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gravit-<br>ational<br>Fields                  | Vector field, a physical quantity<br>with value at each point in space,<br>existing in any region with gravit-<br>ational effect<br>$g = f/M = GM/f^2$ (N kg <sup>-1</sup> ) = a(m s <sup>-1</sup> ) |
| Free<br>Falling<br>Objects<br>Kepler's<br>Law | influenced only by gravity<br>net force given by: $\Sigma F = mg$<br>$a = \Sigma F/g = mg/g = g$<br>$R^3/T^2 = GM/4\pi^2$                                                                            |

## Gravity (cont)

| Work | objects moving through constant      |
|------|--------------------------------------|
| done | gravitational field                  |
|      | Eg = mg∆h                            |
|      | total energy of object moving        |
|      | through gravitational field is       |
|      | constant, even though relative       |
|      | amounts of kinetic and gravitational |
|      | potential energy may change          |
|      | area under gravitational field-dis-  |
|      | tance graph gives energy change      |
|      | per kilo of mass                     |
|      |                                      |

| Electricity |                             |
|-------------|-----------------------------|
| Electric    | vector fields occurring     |
| Fields      | around charged objects      |
|             | fields exert a non-contact  |
|             | force, may be attractive or |
|             | repulsive                   |
| Force on    | F = qE                      |
| Charged     |                             |
| Particle    |                             |

Not published yet.

Page 3 of 5.

Last updated 8th June, 2023.

## Electricity (cont)

| Coulomb's | The electric force between      |
|-----------|---------------------------------|
| Law       | two charges (q1, q2) is         |
|           | proportional to the product of  |
|           | the charges and inversely       |
|           | proportional to the square of   |
|           | the distance between them.      |
| Point     | $F = kq_1q_2 / r^2$             |
| Charges   | where a positive value of force |
|           | represents repulsion            |
|           | $E = kQ / t^2 (N C^{-1})$       |

DC Motors (Split Ring Commutators)



## Wein Filter



## Changing the flux by rotating a loop



## Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/whoooshbooosh/

By WhoooshBooosh

## Unit 3 VCE Physics Cheat Sheet by WhoooshBooosh via cheatography.com/145977/cs/39132/

#### Root Mean Square Voltage



Note: Unless specified, assume RMS values for V, I, P

### **Projectile Motion**



#### Momentum

| "mass in motion"                             | p = mv                          |
|----------------------------------------------|---------------------------------|
| is a vector                                  | $F_{net} = \Delta p / \Delta t$ |
| A net force on an object will cause a change |                                 |

in momentum (Impulse)

## **Conservation of Momentum**

If two objects collide in an isolated system, momentum will be conserved

initial momentum = final momentum

 $\Sigma p$ initial =  $\Sigma p$ final

 $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$ 

OR  $\Sigma p$  final- $\Sigma p$  initial =  $\Delta p = 0$ 

By WhoooshBooosh

cheatography.com/whoooshbooosh/



```
Impulse = Fnet\Delta t = m\Delta v = \Delta p
```

```
is a vector
```

units are either N s<sup>-1</sup> OR kg m s<sup>-1</sup>

using this equation between two states

gives us the average Fnet

is area under force-time graph

| Collisions                                                                                               |                                                                                                             |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| An isolated event<br>(no external forces<br>and momentum is<br>conserved) involving<br>2 or more objects | Elastic Collision<br>momentum and<br>energy is conserved                                                    |
| Usually interact<br>(often strongly) for a<br>short period of time                                       | Inelastic Collision<br>momentum is<br>conserved but<br>energy is not (lost to<br>usually heat and<br>sound) |

Equal and opposite impulses are exerted on each other

## Work

Work(scalar) is the energy transferred to an object or transformed by the application of a force

Work is done by a force on an object when it causes a displacement of an object in the direction of the force

W = Fs

 $W = Fs \cos\theta^*$ 

Work done on an object:

W=Fnets

If the energy doesn't change, or force is perpendicular to displacement, no work is done on object

Not published yet. Last updated 8th June, 2023. Page 4 of 5.

## Work (cont)

is area under force-displacement graph

| Magnets                 |                                                                                                                                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magnetic<br>Flelds      | vector fields, denser the lines<br>means stronger the fields<br>field lines go from north to<br>south pole and never touch<br>magnets are always dipole, can<br>never be monopole      |
| Earth as<br>a<br>Magnet | The Earth is one large magnet<br>– believed to be due to<br>convection currents of molten<br>metals in the outer core<br>True geographic north pole is<br>actually magnetic south pole |

#### Induced EMF in a Moving Conductor

· Recall a charge moving in a magnetic field

F = qvB, and also W = Fd

If I is the length of the conductor over which the electrons travel, combining equations and equating to work per unit charge:

 $\varepsilon = \frac{Bqvl}{a} = lvB$  (J/C or Volts)

#### Linear Particle Accelerators

We only consider the acceleration of particles in uniform electric and magnetic fields

- Electron gun: electrons are 'fired' from a hot cathode (negative charge) to an anode (positive charge)
- · Electrons continue through a hole in the anode · In a uniform electric field, recall:
- F = qE  $E = \frac{V}{d}$  W = qEd W = qV· Work is also the change in kinetic energy of the particle

 $f(t) = \frac{1}{2}mv^2 = qV$ 

This is often refe

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com



## Unit 3 VCE Physics Cheat Sheet by WhoooshBooosh via cheatography.com/145977/cs/39132/



We know electric currents can produce magnetic fields

The separation of charges in the falling rod is an induced electromotive force or induced voltage (or potential difference)

The object needs to keep moving, or the magnetic field needs to be changing for charges to remain separated (to maintain an induced voltage)

Electromotive force (emf), is a source voltage



С

By WhoooshBooosh

cheatography.com/whoooshbooosh/

Not published yet. Last updated 8th June, 2023. Page 5 of 5. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com



ma





## Projectile Range Formula

 $R = u^2 \sin(20) / g$ 

assuming symmetric motion