Newton's Laws of Motion	
First Law:	Objects have inertia, i.e. a stationary object remains stationary, or a moving object keeps on moving at the same speed in the same direction, if there is no net force acting on it
Second Law:	Acceleration of an object is directly proportional to and in the same direction as the net force on it, and inversely proportional to its mass. Fnet = ma
Third Law:	When object A exerts a force on object B, B exerts a force of the same magnitude in the opposite direction on A . Fon A by $B=-F$ on B by A
Vector Addition	
$\stackrel{\rightharpoonup}{n}$	$\downarrow_{\vec{v}} \quad \vec{n}+\left.\vec{v}\right\|_{\vec{v}} ^{\vec{n}} \quad \vec{n}+\vec{v}$
SLM Constant Acceleration Equations	
Uses:	Equation
vuat	$v=u+a t$
vuts	$s=1 / 2(u+v) t$
uats	$s=u t+1 / 2 a t^{2}$
$v a t s$	$s=v t-1 / 2 a t^{2}$
vuas	$v^{2}=u^{2}+2 \mathrm{as}$

By WhoooshBooosh

Einstein's Special Relativity	
Postulate One The Principle of Relativity	Postulate Two The Constancy of the Speed of Light
the laws of physics are the same in all inertial frames of reference (not just mechanics)	the speed of light is constant for all observers
there is no 'preferred' or 'correct' frames of reference	this implies a universal speed limit this has implications of simultaneity of events

Not published yet.
Last updated 8th June, 2023.
Page 1 of 5 .

Time Dilation
$t=t 0 \mathrm{Y}$
$\mathrm{y}=1 / \mathrm{V}^{*} 1-v^{2} / c^{2}$
$t 0$ is proper time, t is dilated time (larger than proper time), y is the Lorentz Factor

Length Contraction

$L=L O / V=L O \sqrt{ } 1-v^{2} / c^{2}$
L 0 is proper length, L is contracted length (small than proper length), and γ is still Lorentz factor

Relativistic Energy

Magnetic Flux and Induced EMF

Induced emf (Faraday's Law of Induction)

Note that the fux needs to be changing over time
(either the field strength or the area) to induce an emf
The negative sign refers to the direction of the
induced eff

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Transformer Equations

Across step-up and step- $\quad V_{1} / V_{2}=N_{1} /$
down transformers
$N 2=12 / 12$
Where voltage and no. of turns are proportional to each other and current is inversely proportional.

By WhoooshBooosh

Centripetal Acceleration

1. Draw diagram showing all forces
2. If required, resolve forces into components
3. There is always a net force towards centre of circular path

Useful equations:
Fnet $=m v^{2} / r$
$v=2 \pi r / T$
$a=v^{2} / r=4 \pi r^{2} / T=4 \pi^{2} r^{2} r$

Motion at Bottom of Loop

Motion at Top of loop

Not published yet.
Last updated 8th June, 2023.
Page 2 of 5 .

Energy	
Conservation of Energy	$\mathrm{E}_{\mathrm{k}}=$
in an isolated system, energy is	$1 / 2 m v^{2}$
transformed from one form to	$\mathrm{E}_{\mathrm{g}}=$
another, can neither be created	$m g \Delta h$
nor destroyed	
Hooke's Law force exerted by spring is directly proportional, but opposite in direction, to the spring's extension or compression	$\mathrm{k} x$
Strain Potential Energy	$\mathrm{E}_{s}=$
	$1 / 2 k \Delta x^{2}$

Gravity	
Newton's	Gravitation is a force of
Law of	attraction that acts between
Universal	any two bodies. The gravit-
Gravit-	ational force between two ation

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Gravity (cont)	
Gravitational Fields	Vector field, a physical quantity with value at each point in space, existing in any region with gravitational effect $\begin{aligned} & g=f / M=G M / f^{2}\left(\mathrm{~N} \mathrm{~kg}^{-1}\right)=\mathbf{a}\left(\mathrm{m} \mathrm{~s}^{-}\right. \\ & \text {1) } \end{aligned}$
Free Falling Objects	influenced only by gravity net force given by: $\Sigma F=m g$ $a=\Sigma F / g=m g / g=g$
Kepler's Law	$R^{3} / T^{2}=G M / 4 T^{2}$

| Gravity (cont) |
| :--- | :--- |
| Work
 done objects moving through constant
 gravitational field
 $E_{g}=m g \Delta h$
 total energy of object moving
 through gravitational field is
 constant, even though relative
 amounts of kinetic and gravitational
 potential energy may change
 area under gravitational field-dis-
 tance graph gives energy change
 per kilo of mass |
| Electricity |

Electricity (cont)	
Coulomb's	The electric force between two charges (q1, q2) is Law proportional to the product of the charges and inversely proportional to the square of the distance between them.
Point	$F=k q 1 q 2 / r^{2}$ Charges where a positive value of force represents repulsion $E=k Q / r^{2}\left(N C^{-1}\right)$

Changing the flux by rotating a loop

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Momentum
"mass in motion" $\quad p=m v$ is a vector \quad Fnet $=\Delta p / \Delta t$ A net force on an object will cause a change in momentum (Impulse)

Conservation of Momentum

If two objects collide in an isolated system, momentum will be conserved
initial momentum $=$ final momentum
Σp initial $=\Sigma p$ final
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$
OR $\Sigma p f$ inal $-\Sigma p$ initial $=\Delta \mathrm{p}=0$

By WhoooshBooosh

Impulse

Impulse $=$ Fnet $\Delta t=m \Delta v=\Delta p$
is a vector
units are either $\mathrm{N} \mathrm{s}^{-1} \mathrm{OR} \mathrm{kg} \mathrm{m} \mathrm{s}{ }^{-1}$
using this equation between two states
gives us the average Fnet
is area under force-time graph

Collisions

An isolated event (no external forces and momentum is conserved) involving 2 or more objects
Usually interact (often strongly) for a short period of time

Elastic Collision momentum and energy is conserved

Inelastic Collision

 momentum is conserved but energy is not (lost to usually heat and sound)Equal and opposite impulses are exerted on each other

Work

Work(scalar) is the energy transferred to an object or transformed by the application of a force

Work is done by a force on an object when it causes a displacement of an object in the direction of the force
$W=F s$
$W=F s \cos \theta^{*}$
Work done on an object:
$W=$ Fnets
If the energy doesn't change, or force is perpendicular to displacement, no work is done on object

Not published yet.
Last updated 8th June, 2023.
Page 4 of 5 .

Work (cont)
is area under force-displacement graph

Magnets	
Magnetic Flelds	vector fields, denser the lines means stronger the fields field lines go from north to south pole and never touch magnets are always dipole, can never be monopole
Earth as Magnet	The Earth is one large magnet - believed to be due to convection currents of molten metals in the outer core True geographic north pole is actually magnetic south pole
Induced EMF in a Moving Conductor	
- Recall a ch - If l is the le combining	rge moving in a magnetic field: $F=q v B, \quad$ and also $W=F d$ gth of the conductor over which the electrons travel, quations and equating to work per unit charge: $\varepsilon=\frac{B q v l}{q}=l v B(\mathrm{~J} / \mathrm{C} \text { or Volts) }$

Linear Particle Accelerators

```
-We only consider the acceleration of particles in uniform electric
    and magnetic fields
    - Electron gun: electrons are 'fired' from a hot cathode (negative
    charge) to an anode (positive charge)
- Electrons continue through a hole in the anode
- In a uniform electric field, recall:
            F=qE E =\frac{V}{d}\quadW=qEd W=qV
-Work is also the change in kinetic energy of the particle
        (0)}\frac{1}{2}m\mp@subsup{m}{}{2}=q
            This is oten refered to as the electrongun equation.
```

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Charged Particles in a Magnetic Field	
- A charged particle enters a magnetic field	
- $F=q v B$ for a charged particle in a magnetic field	
- The force is always at right angles to the direction of travel, causing centripetal acceleration (but magnitude of velocity constant), hence equations for uniform circular motion can be used	
- Show that: $q v B=\frac{m v^{2}}{r}, \quad$ or $r=\frac{m v}{\underline{2}}$	$\times \times{ }^{x} \times \times$
- The charge must be travelling perpendicular to the magnetic field and remain within the field for circular motion to occur	
- How to determine the direction of motion?	

Generating Voltage

We know electric currents can produce magnetic fields

The separation of charges in the falling rod is an induced electromotive force or induced voltage (or potential difference)
The object needs to keep moving, or the magnetic field needs to be changing for charges to remain separated (to maintain an induced voltage)

Electromotive force (emf), is a source voltage

Inclined Plane

Remember: constant velocity means $\mathrm{F}_{\text {net }}=\mathrm{O}$

By WhoooshBooosh

Banked Turn Design Speed

Projectile Motion

An object projected with a velocity V at an angle θ, has both vertical and horizontal components to that initial velocity V .

Projectile Range Formula

$$
R=u^{2} \sin (20) / g
$$

assuming symmetric motion

Not published yet.
Last updated 8th June, 2023.
Page 5 of 5 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

