Electronics Analog Cheat Sheet
by whatthe via cheatography.com/18561/cs/1809/

```
Resistors
in series: Rtotal = R1 + R2 etc
parallel: Rtotal = 1/ (1/R1 + 1 / R2 etc.)
```

Ohm's Law	
V=IR	$\mathrm{I}=\mathrm{V} / \mathrm{Xc}$
$\mathrm{Z}=\mathrm{V} / \mathrm{I}$	$\mathrm{I}=\mathrm{V} / \mathrm{XL}$

THE (R) GETS REPLACED DEPENDING ON WHAT YOU'RE USING TO SOLVE

RC Circuits	
Time constant	$\tau=R C$
instanteous voltage	$\mathrm{V}=\mathrm{Vf}+(\mathrm{Vi}-\mathrm{Vf}) \mathrm{e}^{\wedge}(-\mathrm{t} / \mathrm{t})$
current	$\mathrm{i}=\mathrm{If}+(\mathrm{li}-\mathrm{If}) \mathrm{e}^{\wedge}(-\mathrm{t} / \mathrm{T})$
charging from zero	$\mathrm{V}=\mathrm{Vf}\left(1-\mathrm{e}^{\wedge}(-\mathrm{t} / \mathrm{RC})\right)$
Capacitive reactance	$X c=1 / 2 p i f C$
Xc in series	$X c$ total $=X c 1+X^{\prime} 2 \ldots$
Xc in parallel	$\begin{aligned} & X c=1 /(1 / X c 1)+ \\ & (1 / X c 2)+\ldots \end{aligned}$

Inductors	
in series	$\mathrm{Lt}=\mathrm{L} 1+\mathrm{L} 2$ etc
parallel	$\mathrm{Lt}=1 /(1 / \mathrm{L} 1)+(1 / \mathrm{L} 2) \ldots$

Current Divider
$|x=(R t / R x)| s$

Voltage across Capacitor
$\mathrm{V}=(\mathrm{ct} / \mathrm{cx}) \mathrm{Vs}$

Not published yet.
Last updated 13th May, 2016.
Page 1 of 1 .

Sponsored by ApolioPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

