```
Positional Number System
```

- Radix - number of unique symbols in a number system
- usually 0-9, then A-Z

Number System Base conversion

Base conversion between numeral systems

- Binary prefix are mainly use in memory capacity
- SI prefix are usually use in data transfer rate or storage space
- abbreviation * value $=$ number of bits

Binary Data Organization

- a bit has 2 cells
- most significant (left) ------ least significant (right)
- bit(b), byte(B)
- little endian - top address to bottom
- big endian - bottom address to top

Integer representation

UNSIGNED	0 to $\left(2^{n}\right)-1$
normal	fill the rest with $0(M S b)$
SIGNED	$-\left(2^{n-1}\right)$ to $+\left(2^{n-1}\right)-1$
sign and magnitude	sign bit \mid positive int
1 's complement $(n-1$'s)	flip for negative int
2 's complement $(n ' s)$	flip then +1, for negative int

[^0]```
SHOULD ; otherwise, overflow
```


## ADDITION

```
UNSIGNED SHOULD NOT have carry
SIGNED [same sign] SHOULD remain the same sign
SIGNED [different sign] add using 2's complement representation (never overflow)
SUBTRACTION
UNSIGNED SHOULD HAVE carry
SIGNED A-B = A+B' (2's complement B)
```

addition of signed integers [same sign]

1. first bit should never change
2. ignore carry if there is


## By wayneswu

cheatography.com/wayneswu/

Not published yet.
Last updated 18th September, 2023.
Page 1 of 3 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

## IEEE 754 Floating point for single precision

| $1-$ sign bit | $8-$ exponent | 23 - mantissa |
| :--- | :--- | :--- |
| 0 for positive | $\mathrm{e}^{\prime}=\mathrm{e}+127$ | f in $1 . f$ notation |

## Example:

Given: 3.510

1. $3.5_{10}=11.1_{2}$
2. $1.11 \times 2^{1}$
3. $e^{\prime}=128_{10}==1000 \_0000_{2}$

Answer: 1_1000000_110 0000... 00000

## IEEE 754 Floating point for single precision

| $1-$ sign bit | $8-$ exponent | $23-$ mantissa |
| :--- | :--- | :--- |
| 0 for positive |  |  |


| test |  |  |
| :--- | :--- | :--- |
| 1 - sign bit | 8 - exponent | 23 - mantissa |
| 0 for positive | $\mathrm{e}^{\prime}=\mathrm{e}+127$ | f in $1 . f$ notation |

## Example:

Given: 3.510

1. $3.5_{10}=11.1_{2}$
2. $1.11 \times 21$
3. $e^{\prime}=128_{10}==1000 \_0000_{2}$

Answer: 1_1000000_110 0000... 00000

## Special cases floating single precision



## By wayneswu

cheatography.com/wayneswu/

Not published yet.
Last updated 18th September, 2023.
Page 2 of 3 .

## Sponsored by Readable.com

Measure your website readability!
https://readable.com


[^0]:    - unsigned integers use zero extension
    - signed integers use sign extension
    in short, extend the MSb until you have reached the sufficient num of bits

