

do not use Cheat Sheet

by wayneswu via cheatography.com/193768/cs/40338/

Positional Number System

- Radix number of unique symbols in a number system
- usually 0-9, then A-Z

Number System Base conversion

2x vs 10y

- Binary prefix are mainly use in memory capacity
- SI prefix are usually use in data transfer rate or storage space
- abbreviation * value = number of bits

Binary Data Organization

Organization	Number of bits	Usage
Bit (binary digit)	2 cells - 0 or 1	Basic unit
Crumb	2 bits	*largely defunct term. rarely used
Nibble	4 bits	Hex digit, BCD digit
Byte	8 bits	Smallest addressable data unit
Half word	16 bits	Definition of word is architecture-dependent
Word	32 bits	A 32-bit architecture considers 1 word as 32-bit
Double word	64 bits	
Quad word	128 bits	

- a bit has 2 cells
- most significant (left) ----- least significant (right)
- bit(b), byte(B)
- little endian top address to bottom
- big endian bottom address to top

Integer	represer	ntation

magar representation	
UNSIGNED	0 to (2 ⁿ)-1
normal	fill the rest with 0 (MSb)
SIGNED	$-(2^{n-1})$ to $+(2^{n-1})-1$
sign and magnitude	sign bit positive int
1's complement (n-1's)	flip for negative int
2's complement (n's)	flip then + 1, for negative int

- unsigned integers use zero extension
- signed integers use sign extension

in short, extend the MSb until you have reached the sufficient num of bits

SHOULD ___; otherwise, overflow

ADDITION

UNSIGNED SHOULD NOT have carry

SIGNED [same sign] SHOULD remain the same sign

SIGNED [different sign] add using 2's complement representation (never overflow)

SUBTRACTION

UNSIGNED SHOULD HAVE carry

SIGNED A-B = A+B' (2's complement B)

addition of signed integers [same sign]

1. first bit should never change

2. ignore carry if there is

By wayneswu

cheatography.com/wayneswu/

Not published yet. Last updated 18th September, 2023. Page 1 of 3. Sponsored by Readable.com

Measure your website readability!

https://readable.com

do not use Cheat Sheet by wayneswu via cheatography.com/193768/cs/40338/

IEEE 754 Floating point for single precision

1 - sign bit 8 - exponent 23 - mantissa

0 for positive e' = e + 127 f in 1. f notation

Example:

Given: 3.5₁₀

1. 3.5₁₀ = 11.1₂

2. 1.11 x 2¹

3. e' = 128₁₀ == 1000_0000₂

Answer: 1_1000000_110 0000...00000

IEEE 754 Floating point for single precision

1 - sign bit 8 - exponent 23 - mantissa

0 for positive

test

1 - sign bit 8 - exponent 23 - mantissa

0 for positive e' = e + 127 f in 1. f notation

Example:

Given: 3.5₁₀

 $1. \ 3.5_{10} = 11.1_{2}$

2. 1.11 x 21

3. $e' = 128_{10} == 1000_0000_2$

Answer: 1_1000000_110 0000...00000

Special cases floating single precision

Sign Bit		Significand	Value
0	0000 0000	000 0000 0000 0000 0000 0000	+0 (Positive Zero)
1	0000 0000	000 0000 0000 0000 0000 0000	-0 (Negative Zero)
0/1	0000 0000	≠ 0	Denomalized
0	1111 1111	000 0000 0000 0000 0000 0000	+ Infinity
1	1111 1111	000 0000 0000 0000 0000 0000	- Infinity
x	1111 1111	01x xxxx xxxx xxxx xxxx xxxx	sNaN
x	1111 1111	1xx xxxx xxxx xxxx xxxx xxxx	qNaN

By wayneswu

cheatography.com/wayneswu/

Not published yet. Last updated 18th September, 2023. Page 2 of 3. Sponsored by Readable.com

Measure your website readability!

https://readable.com