Cheatography

Positional Number System

- Radix number of unique symbols in a number system
- usually 0-9, then A-Z

Number System Base conversion

2x vs 10y

Decimal							Value	
term	Abbreviation	Value	term	Abbreviation	Value	S Larger	0.10	4.034
kilobyte	P23	10*	kibibyte	KB	211	2%	2	1024
megazyte	MB	20 ⁴	mobibyte	ME	211	5%	230	1 048 576
gigotyte	68	202	gbiate	68	210	2%	-	
teraliyte	18	1012	tebityte	18	2"	10%	230	1 073 741 824
petabyte	PB	5077	pebbyte	P.B	2"	13%	240	1 099 511 627 776
exabite	CD CD	50**	exbibyte	0.0	2"	15%	*	1000 011 020 110
zettelyte	28	2021	zebityte	2.6	210	18%	250	1 125 899 906 842 624
yottokyte	18	2024	yobityte	YB	210	21%	260	1 153 031 504 505 045 03

- Binary prefix are mainly use in memory capacity

- SI prefix are usually use in data transfer rate or storage space

- abbreviation * value = number of bits

Binary Data Organization

ganization	Number of bits	Usage
(binary digit)	2 cells - 0 or 1	Basic unit
umb	2 bits	*largely defunct term. rarely used
ble	4 bits	Hex digit, BCD digit
ie .	8 bits	Smallest addressable data unit
If word	16 bits	Definition of word is architecture-dependent
rd	32 bits	A 32-bit architecture considers 1 word as 32-bit
uble word	64 bits	
how he	128 bits	

Or Bit Cri NH By Ha UW Do

• a bit has 2 cells

• most significant (left) ----- least significant (right)

bit(b), byte(B)

• little endian - top address to bottom

• big endian - **bottom** address to **top**

Integer representation						
UNSIGNED	0 to (2 ⁿ)-1					
normal	fill the rest with 0 (MSb)					
SIGNED	$-(2^{n-1})$ to $+(2^{n-1})-1$					
sign and magnitude	sign bit positive int					
1's complement (n-1's)	flip for negative int					
2's complement (n's)	flip then + 1, for negative int					
- unsigned integers use zero extension						
- signed integers use sign extension						

in short, extend the MSb until you have reached the sufficient num of bits

SHOULD ___; otherwise, overflow

ADDITION

UNSIGNED SHOULD NOT have carry

SIGNED [same sign] SHOULD remain the same sign

SIGNED [different sign] add using 2's complement representation (never overflow)

SUBTRACTION

UNSIGNED SHOULD HAVE carry

SIGNED A-B = A+B' (2's complement B)

addition of signed integers [same sign]

- 1. first bit should never change
- 2. ignore carry if there is

By wayneswu

cheatography.com/wayneswu/

Not published yet. Last updated 18th September, 2023. Page 1 of 3. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

do not use Cheat Sheet by wayneswu via cheatography.com/193768/cs/40338/

IEEE 754 Floating point for single precision	n	
1 - sign bit	8 - exponent	23 - mantissa
0 for positive	e' = e + 127	f in 1.f notation
Example:		
Given: 3.510		
$1.\ 3.5_{10} = 11.1_2$		
2. 1.11 x 2 ¹		
3. e' = 128 ₁₀ == 1000_0000 ₂		
Answer: 1_1000000_110 000000000		
IEEE 754 Floating point for single precision	ı	
1 - sign bit	8 - exponent	23 - mantissa
0 for positive		
test		
1 - sign bit	8 - exponent	23 - mantissa
0 for positive	e' = e + 127	f in 1.f notation
Example:		
Given: 3.510		
1. 3.5 ₁₀ = 11.1 ₂		
2. 1.11 x 21		
3. e' = 128 ₁₀ == 1000_0000 ₂		
Answer: 1_1000000_110 000000000		
Spacial cases floating single precision		
	Sign Bit E' Significand Value 0 0000 0000 000 0000 0000 0000 +0 (Peiitrz Zero) 1 0000 0000 000 00000 0000 0000 -0 (Neuritrz Zero)	
	0:1 0000 0000 ≠ 0 Denomalized 0 1111 1111 000 0000 0000 0000 0000 0000 + Infinity	
	1 1111 1111 000 0000 0000 0000 0000 - Infinity x 1111 111 01x XXXX XXXX XXXX XXXX sNaN x 1111 111 11X XXXX XXXX XXXX XXXX sNaN	
By wayneswu	Not published yet.	Sponsored by ApolloPad.com

cheatography.com/wayneswu/ Last updated

Last updated 18th September, 2023. Page 2 of 3. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com